
6.S966: Exam 1, Spring 2025

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 15

2 30

3 55

Total: 100
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Parsing Proofs

1. (15 points) In this problem, we will go through the proof that gives us the relationship be-
tween the order (number of elements) of a (finite) group G and the dimensions of the group’s
irreducible representations.

∑
j

ℓ2j = |G| = h

To prove this, we will decompose the regular representationDreg into irreps using the Wonderful
Orthogonality Theorem for Character.

k∑
k′=1

Nk′
[
χΓi(Ck′)

]
χΓj (Ck′) = hδΓi,Γj

(a) Describe how the (left) regular representation is constructed from the group’s multiplica-
tion table.

Solution: We construct the regular representation using the group’s multiplication ta-
ble by first rearranging the columns (using the inverses of the corresponding elements)
so that the identity element appears along the diagonal. Then, for each element in
the group, a row is formed with a 1 in the column corresponding to the product with
that element and 0’s elsewhere.

(b) Explain why the regular representation has a non-zero trace only for the identity element
and use this fact to determine the characters for each conjugacy class k in terms of the
group order h.

Solution: After rearranging so that the identity is on the diagonal, only the identity
contributes a 1 on every diagonal entry, yielding a trace equal to the order of the group
h. All other group elements do not lie on the diagonal, resulting in a trace of 0 for
each. Consequently, the character of the regular representation is equal to the order
of the group for the identity conjugacy class, and 0 for all other conjugacy classes.
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(c) The characters for any representation can be written as a linear combination of the char-
acters of irreps, thus we can write the characters of the regular representation Dreg as

χreg(Ck) =
∑
Γi

aiχ
(Γi)(Ck)

where
∑

Γi
is the sum over irreducible representations. The coefficients ai are given by

ai =
1

h

∑
k

Nk

[
χ(Γi)(Ck)]

]∗
χreg(Ck).

Use this relationship and your answers above to show how many copies of each irrep are
in Dreg.

Solution: Since the character of the regular representation is only non-zero for the
conjugacy class corresponding to the identity, only the sum over the identity class
contributes. The character of any irrep under the identity is simply the dimensionality
of the irrep ℓi and Nk = 1 for the identity. Thus, ai =

1
hχ

(Γi)(E)χreg(E) = li(h)
h = li.

(d) Use this result to show that
∑

i ℓ
2
i = h from the expression for χreg(E).

Solution: Plugging in the values for ai we get χreg(E) = h =
∑

Γi
ℓiχ

(Γi)(E) =
∑

i ℓ
2
i
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Interpreting Outputs

2. (30 points) In the following questions, you will be shown code snippets that use functions that
you have coded in the exercises and be asked to interpret the output. You may assume that
all necessary imports have been made. Refer to the docstrings for these functions provided at
the end of your exam booklet, before the “Work space” pages.

import numpy as np

from symm4ml import groups, linalg, rep

(a) The group C6v can be generated with the following two matrices:

rot_mat = lambda theta: np.array([

[np.cos(theta), np.sin(theta)],

[-np.sin(theta), np.cos(theta)]

])

mirror_x = np.array([[1., 0], [0, -1]])

generators = [rot_mat(2 * np.pi / 6), mirror_x]

C6v_vec = groups.generate_group(np.stack(generators, axis=0))

print(C6v_vec.shape)

>> (12, 2, 2)

Which of the following sets of operations generate the group C6v? In other words, if these
lists were assigned to generators, the resulting operations would form C6v. Select all
that apply and explain your reasoning.

Solution:

√
[rot mat(-2 * np.pi / 6), mirror x]

□ [rot mat(2 * np.pi / 6), rot mat(-2 * np.pi / 6)]

√
[rot mat(2 * np.pi / 6), np.array([[-1., 0], [0, 1]])]

□ [mirror x, np.array([[-1., 0], [0, 1]])]

Explanation: We need to include a 2D mirror and a 6-fold rotation (either CCW or
CW will work).
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(b) We then compute the multiplication table and irreps for C6v.

C6v_table = groups.make_multiplication_table(C6v_vec)

np.random.seed(5)

C6v_irreps = rep.infer_irreps(C6v_table)

where np.random.seed(5) is fixing the output of rep.infer_irreps.

i. What representation does rep.infer_irreps use to infer irreps? And why does it
use this representation?

Solution: rep.infer_irreps uses the regular representation of a finite group to
recover all irreps. There is at least one copy of each irrep in the regular represen-
tation (the number of copies equals the dimension of the irrep).

ii. What part of rep.infer_irreps (or function that rep.infer_irreps calls) uses
randomness and why is randomness used?

Solution: rep.infer_irreps passes the regular representation to
rep.decompose_rep_into_irreps which does use randomness. This randomness
is to create a random linear combination of solutions from
linalg.infer_change_of_basis between the regular representation and itself.
rep.decompose_rep_into_irreps then performs an eigenvalue decomposition
on this linear combination. The randomness helps ensure that each individual
eigenspaces corresponding to each irrep do not accidentally have degenerate eigen-
values.
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(c) We then compute the subgroups of C6v and we store the elements for all subgroups of
order 6.

C6v_subs = list(groups.subgroups(C6v_table))

C6v_subs_lengths = [len(h) for h in C6v_subs]

indices_len6 = np.nonzero(C6v_subs_lengths == 6)[0]

subgroups_len6 = np.array([list(C6v_subs[i]) for i in indices_len6])

print(subgroups_len6)

>> [[ 2 3 4 5 10 11]

[ 1 3 4 6 9 11]

[ 0 3 4 7 8 11]]

i. Three elements are common between all three order 6 subgroups, [3, 4, 11]. What
symmetry operation must one of these elements correspond to? Explain your reason-
ing.

Solution: One of the elements must be the identity, as it is an element of every
group.

ii. The subgroups correspond to either C3v or C6. Below are the multiplication tables for
the three order 6 subgroups. Two are isomorphic, and one is not. Identify which table
corresponds to which group, and explain your reasoning. Hint: Recognize patterns
in the table; you don’t need to find an explicit isomorphism. You can assume the
elements are ordered as in the subgroups_len6 lists.

Solution: The 0th and 1st groups correspond to C3v because they are non-abelian
tables. The 2nd group corresponds to C6 because it is an abelian table.
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(d) Suppose that we have a representation of one of the 2D representations of C6v, E2, stored
in the variable C6v_E2.

i. We calculate the following:

cob = linalg.infer_change_of_basis(C6v_E2, C6v_E2)

print(cob.round(2))

print(cob.shape)

>> [[[ 0.71 0. ]

[ 0. 0.71]]]

>> (1, 2, 2)

Explain the dimensions of the output cob. What does the zeroth dimension of the out-
put cob.shape[0] mean, and what theorem can we use given this output to determine
the irreducibility or reducibility of C6v_E2?

Solution: The zeroth dimension tells us the number of solutions that linalg.infer_change_of_basis
find between C6v_E2 and itself. By Schur’s Lemma we know that if the only so-
lution is a constant matrix, that the representation is indeed irreducible.

ii. We calculate the following where the indices corresponding to a subgroup isomorphic
to C3v are stored in the variable C3v_elem:

cob = linalg.infer_change_of_basis(C6v_E2[C3v_elem], C6v_E2[C3v_elem])

print(cob.round(2))

print(cob.shape)

>>[[[0.71 0. ]

[0. 0.71]]]

>>(1, 2, 2)

What does this output tell us about the irreducibility or reducibility of the C6v irrep
E2 under C3v? Explain your reasoning.

Solution: C6v_E2 remains irreducible under C3v.
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iii. We calculate the following where the indices corresponding to a subgroup isomorphic
to C6 are stored in the variable C6_elem:

cob = linalg.infer_change_of_basis(C6v_E2[C6_elem], C6v_E2[C6_elem])

print(cob.round(2))

print(cob.shape)

>>[[[ 0.71 0. ]

[-0. 0.71]]

[[-0. 0.71]

[-0.71 -0. ]]]

>> (2, 2, 2)

What does this output tell us about the irreducibility or reducibility of the C6v irrep
E2 under C6? Explain your reasoning.

Solution: C6v_E2 is reducible under C3v. It breaks into two 1D irreps.
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Vibrational Modes of a Hexagon

3. (55 points) In this problem, you will explore the vibrational modes and representations of a
hexagon’s vertices. The symmetry of a hexagon (ignoring in-plane mirror symmetry) is given
by the point group C6v. Below is its character table, with the usual class size numbers omitted.

C6v E C6 C3 C2 σv σd
A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

(a) Complete the diagram below to determine the number of elements in each conjugacy class.
The first row shows one example element from each class acting on the hexagon’s spatial
representation.

i. In the second row, list or illustrate all other rotations or mirrors in the same conjugacy
class. Clearly indicate the rotation angles for rotation elements and use dashed lines
for mirror elements.

ii. In the third row, record the total number of elements in each conjugacy class. Hint:
They should sum to 12.

Solution:

Page 9



Name:

(b) The 3D vector representation for the elements in the first row of part (a) is the following:

E =


1 0 0

0 1 0

0 0 1

 C6 =


1
2

√
3
2 0

−
√
3
2

1
2 0

0 0 1

 C3 =


−1

2

√
3
2 0

−
√
3
2 −1

2 0

0 0 1



C2 =


−1 0 0

0 −1 0

0 0 1

 σv =


−1 0 0

0 1 0

0 0 1

 σd =


1 0 0

0 −1 0

0 0 1


i. What are the characters of the 3D vector representation?

Solution:
E C6 C3 C2 σv σd

Γvec 3 2 0 -1 1 1

ii. Using the given character table and the Wonderful Orthogonality Theorem for Char-
acters, decompose the 3D vector representation of C6v into irreps of C6v. Be sure to
account for the number of elements in each conjugacy class in your calculations. Hint:
The total dimension of the irreducible components must sum to 3.

Solution: A 3D vector decomposes into A1 ⊕ E1
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(c) The 3D pseudovector representation transforms similar to the vector representation, ex-
cept it does not change sign under inversion. This means for any inversion, rotoinversions
(improper rotations) or mirrors, we “undo” the inversion contained in the matrix repre-
sentation for the 3D vector (i.e. we multiply the matrix by -1 * np.eye(d)).

i. What are the characters of the 3D pseudovector under C6v?

Solution:
E C6 C3 C2 σv σd

Γpseudovec 3 2 0 -1 -1 -1

ii. How does Γpseudovec decompose into irreps of C6v?

Solution: A 3D pseudovector decomposes into A2 ⊕ E1
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(d) To determine the vibrational modes of a hexagon’s vertices, we first construct the per-
mutation representation of the group acting (from the left) on these vertices. Using the
vertex ordering below, build the 6 × 6 permutation matrix for each element in the first
row of the C6v conjugacy class diagram from part (a). Only fill-in non-zero entries; leave
other entries blank (they are assumed to be zero).

Solution:
E C6

C3 C2

σv σd

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0





1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
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(e) The characters of the permutation representation of the vertices that you computed above
should be the following:

E C6 C3 C2 σv σd
Γvertices 6 0 0 0 0 2

which decomposes into A1 + B2 + E1 + E2. Now, we are ready to compute the irreps of
our vibrational modes.

i. Use the following direct product table, to compute the irreps of Γvertices ⊗ Γvec.

A1 A2 B1 B2 E1 E2

A1 A1 A2 B1 B2 E1 E2

A2 A2 A1 B2 B1 E1 E2

B1 B1 B2 A1 A2 E2 E1

B2 B2 B1 A2 A1 E2 E1

E1 E1 E1 E2 E2 A1 ⊕A2 ⊕ E2 B1 ⊕B2 ⊕ E1

E2 E2 E2 E1 E1 B1 ⊕B2 ⊕ E1 A1 ⊕A2 ⊕ E2

Solution: (A1 ⊕B2 ⊕E1 ⊕E2)⊗ (A1 ⊕E1) = 2A1 ⊕A2 ⊕B1 ⊕ 2B2 ⊕ 3E1 ⊕ 3E2

ii. Using your answers from above, deduce which irreps are contained in Γvertices⊗Γvec−
Γtranslation − Γrotation, where Γtranslation = Γvec and Γrotation = Γpseudovector. You can
check your answer by ensuring the total number of dimensions the irreps span is
3N − 6 = 18− 6 = 12.

Solution: (2A1 ⊕ A2 ⊕ B1 ⊕ 2B2 ⊕ 3E1 ⊕ 3E2) − (A1 ⊕ E1) − (A2 ⊕ E1) =
A1 ⊕B1 ⊕ 2B2 ⊕ E1 ⊕ 3E2
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(f) Below, we plot examples of vibrational modes that transform as specific irreps of C6v, but
the irrep label is missing. Use the symmetry of the distortion and the character table,
to match the modes with their irrep. Explain your reasoning. Hint: Under which
elements (represented by the conjugacy classes C2, C3, C6, σv, and σd) is the distortion
mode (pattern of displacements) invariant or not invariant? How does this connect to the
character of the irreps the mode transforms as?

i. Solution: B2, the mode breaks 6- and 2-fold symmetry but
preserves 3-fold symmetry.

ii. Solution: E2, It preserves 2-fold symmetry but breaks 3-
and 6-fold symmetry.

iii. Solution: A1, the mode preserves all symmetries of the orig-
inal positions.

iv. Solution: E1, it breaks 2-, 3-, and 6-fold symmetry and
specifically mirrors under 2-fold symmetry (-2 character for C2.
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