
6.S966: Exam 3, Spring 2025

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in.) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hour and 50 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 30

2 15

3 55

Total: 100
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Is it equivariant?

1. (30 points) Determine whether the following proposed operations are equivariant with respect
to the group SO(3) or not.

(a) Apply a ReLU (max(x, 0)) to spherical harmonic coefficients transforming as
⊕ℓmax

ℓ=0 ℓ,
representing a scalar function on S2. Is this operation equivariant under SO(3)?

Solution:

⃝ Equivariant

√
Not equivariant

Explain your answer: Not equivariant. The coefficients of spherical harmonics trans-
form as irreps of SO(3) which can change sign underrotation. Thus, a ReLU activation
function will act differently on these coefficients depending on arbitrary orientation of
the data.

(b) Apply a ReLU (max(x, 0)) pointwise to a scalar signal on S2. Is this operation equivariant
under SO(3)?

Solution:

√
Equivariant

⃝ Not equivariant

Explain your answer: Equivariant. A scalar function on the sphere transforms as a
permutation representation, which means any transformation of the signal will only
change the location of a value but not the value itself. The action of the ReLU and
the permutation commute, so we do not break equivariance.

(c) Multiply two scalar functions on S2 pointwise. Assume both rotate together under SO(3).
Is the result equivariant?

Solution:

√
Equivariant

⃝ Not equivariant

Explain your answer: Equivariant. Point-wise multiplication of scalar signals is equiv-
ariant because the value resulting from the multiplication does not change with ro-
tation. Again, the representation of rotation on the scalar signal is a permutation
representation.
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(d) Take the tensor product of spherical harmonic coefficients with themselves, where the
coefficients transform as

⊕ℓmax
ℓ=0 ℓ. Is this operation equivariant under SO(3)?

Solution:

√
Equivariant

⃝ Not equivariant

Explain your answer: Equivariant. A tensor product of two direct sums of irreps
preserve the group structure because DΓi(g)⊗DΓj (g) = DΓi⊗Γj (g).

(e) Multiply matching coefficients from a direct sum of spherical harmonics (e.g., cℓ=1,m=0 ×
cℓ=1,m=0). Is the result equivariant?

Solution:

⃝ Equivariant

√
Not equivariant

Explain your answer: Not equivariant. The scalar multiplication of equivariant irreps
is not equivariant.

(f) Given two copies of the same 1D irrep A of a group G, scale one by a and the other by b.
Does this preserve equivariance?

Solution:

√
Equivariant

⃝ Not equivariant

Explain your answer: Equivariant. We can always multiply an irrep by a constant
matrix, which for a 1D irrep is a single scalar.
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(g) Given a 2D irrep E of a group G, multiply the first component by a and the second by b.
Is this operation equivariant?

Solution:

⃝ Equivariant

√
Not equivariant

Explain your answer: Not equivariant. In order for group action on E to commute
with the operation, the scalars applied to E must transform as a constant matrix.

(h) Given two copies of a 2D irrep E of a group G, scale each copy by a scalar multiple of
the identity (a * np.eye(2) and b * np.eye(2)), then sum them. Does this preserve
equivariance?

Solution:

√
Equivariant

⃝ Not equivariant

Explain your answer: Equivariant. By Schur’s Lemma, we can mix irreps of the same
type, as long as we are doing so with constant matrices applied to each irrep.

Page 4



Name:

Vibrational Modes of Simple Lattices

2. (15 points) In class, we analyzed vibrational modes in point-symmetric objects. We now extend
this to periodic systems with translational symmetry, analyzing vibrational modes in simple
lattices.

(a) Consider a 1D periodic lattice with identical atoms spaced by a = ax̂. The translation
symmetries of this lattice consists of shifts by integer multiples of a. The translation irreps
are 1D (tranlations are Abelian) and indexed by a continuous label k ∈ [−π/a, π/a). These
irreps are defined by

ρk(Tn) = eikna.

where n is an integer (positive, negative or zero). Briefly explain why the irreps are
labeled by values in the range k ∈ [−π/a, π/a) (called the first Brillouin zone). Hint:
Let k′ = k + 2π/a, where k ∈ [−π/a, π/a). Expand eik

′na.

Solution:
eik

′na = ei(k+
2π
a
)na = eiknaei2πn = eikna1

(b) The 3D simple cubic lattice has identical atoms at positions defined by integer multiples
of the lattice lattice vectors (a1,a2,a3) = (ax̂, aŷ, aẑ). Its vibrational modes are labeled
by wavevector k⃗ ∈ [−π/a, π/a)3, i.e. inside the first Brillouin zone of the reciprocal lattice
with lattice vectors (b1,b2,b3) = (2πa x̂, 2πa ŷ, 2πa ẑ). The modes transform under the little

group at k⃗ = K, the subgroup of Oh satisfying

Kvec(g)k⃗ = k⃗ + n1b1 + n2b2 + n3b3.

That is, symmetries that leave k⃗ invariant modulo a reciprocal lattice vector.

At fixed k⃗ = K, vibrational modes transform under

Kperm(g)⊗Kvec(g),

where Kperm acts on atom positions and Kvec on 3D displacements. With one atom per
unit cell in the 3D cubic lattice, there are 3 degrees of freedom per k⃗. Rigid motions are
not subtracted, as they do not correspond to irreps at nonzero k⃗.

At k⃗Γ = (0, 0, 0), the little group is all of Oh. The atom is fixed by all symmetries, so
Γperm(g) = A1g, and Γvec(g) = T1u. What is the irrep decomposition of the vibrational

modes at k⃗Γ? Explain your reasoning.

Solution: They transform as T1u. A scalar times any non-scalar irrep equals the
non-scalar irrep.
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(c) Vibrational modes belonging to different dimensions of the same copy of a given irrep
must have the same “energy”. How many distinct energies do the vibrational modes of
the simple cubic lattice have at k⃗Γ = (0, 0, 0)? Explain your reasoning.

Solution: Since the vibrational modes transform as a single copy of T1u at k⃗ =
(0, 0, 0), there is only one distinct “energy”.

(d) You will analyze how the vibrational modes of the simple cubic lattice transform under
the little group at the following k⃗-points:

• k⃗Y = π
a (0, 1, 0) — invariant under the subgroup D4h

• k⃗Σ = π
a (u, u, 0) with 0 < u < 1 — invariant under C2v

Using the character tables for D4h, and C2v provided in the reference section, determine
how the 3 vibrational modes of the simple cubic lattice decompose into irreps at each k⃗.
Based on this, how many distinct vibrational “energies” are possible at each point?

i. How do the 3 simple cubic vibrational modes transform at k⃗Y (invariant under D4h)?
How many distinct energies can the vibrational modes of the simple cubic lattice have
at k⃗Y ? Explain your reasoning.

Solution: Y vec transforms as A2u + Eu under D4h, thus there are two distinct
energies at k⃗Y .

ii. How do the 3 simple cubic vibrational modes transform at k⃗Σ (invariant under C2v)?
How many distinct energies can the vibrational modes of the simple cubic lattice have
at k⃗Σ? Explain your reasoning.

Solution: Σvec transforms as A1+B1+B2 under C2v, thus there are three distinct
energies at k⃗Σ.
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The Tesseract

3. (55 points) The tesseract has had a surprisingly active pop culture career — appearing in
science fiction films like Interstellar (as a physical representation of time in higher dimensions)
and superhero stories like The Avengers (as a mysterious cube-shaped energy source). But
in mathematics, the tesseract is a 4D hypercube: a highly symmetric geometric object. In
this problem, you’ll use your knowledge of 2D square (D4) and 3D cube (Oh) symmetries to
construct and explore the discrete symmetry group of the tesseract — no special effects needed.

Figure 1: 2D Square, 3D Cube, 4D Tesseract

Figure 2: 3D projection of a tesseract while performing a simple rotation about a plane which
bisects the figure from front-left to back-right and top to bottom. Source: Wikipedia, created by
Jason Hise.
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(a) For all code snippets below, you can assume the following libraries have been imported

1 import numpy as np

2 import scipy.linalg

3 from symm4ml import groups, rep, so3

i. Recall that we can generate the 8 element symmetry group of the square D4 a 2D
4-fold (90◦) rotation and a 2D mirror across the x axis.

4 so2_gen = np.array([[0, 1], [-1., 0]])

5 rot_90_2D = scipy.linalg.expm(2 * np.pi / 4 * so2_gen)

6

7 square_gen = np.stack([

8 rot_90_2D, # 90 degree rotation

9 np.diag([1, -1]) # 2D mirror across x-axis

10 ])

11

12 square_group = groups.generate_group(square_gen)

13 print("Square group 2D vector rep: ", square_group.shape)

14 >> Square group 2D vector rep: (8, 2, 2)

Can the 2D mirror across the x-axis (line 9) be generated using the SO(2) generator?
Explain your reasoning.

Solution: No, it cannot, it has determinant -1. 2D mirror is an element of O(2).

ii. Describe how the function groups.generate_group uses square_gen to generate
square_group.

Solution: groups.generate_groupmultiplies the matrices (elements) from square_gen

and successive matrices produced from this procedure to build up the group until
closure is achieved, no additional matrices (elements) are created by multiplying
known matrices (elements).
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iii. The symmetry group of the cube (Oh, same as the octahedra) of 48 elements can be
generated with the generators of the square and one additional rotation, a 4-fold (90◦

rotation) in the yz plane (whose normal vector is along the 3D x-axis) or a 4-fold (90◦

rotation) in the xz plane (whose normal vector is along the 3D y-axis).

15 rot_90_yz_3D = so3.axis_angle_to_matrix(np.array([1, 0, 0]), np.pi/2)

16 rot_90_xz_3D = so3.axis_angle_to_matrix(np.array([0, 1, 0]), np.pi/2)

17

18 square_gen_to_3D = rep.direct_sum(square_gen, np.ones([len(square_gen), 1, 1]))

19

20 # This works

21 cube_gen = np.concatenate([square_gen_to_3D, rot_90_yz_3D[np.newaxis]])

22 # So does this

23 cube_gen = np.concatenate([square_gen_to_3D, rot_90_xz_3D[np.newaxis]])

24

25 cube_group = groups.generate_group(cube_gen)

26 print("Cube group 3D vector rep: ", cube_group.shape)

27 >> Cube group 3D vector rep: (48, 3, 3)

How does the function so3.axis_angle_to_matrix use the given arguements to con-
struct the matrices rot_90_yz_3D and rot_90_xz_3D? What representation does this
function return and which generators are used to do so?

Solution: so3.axis_angle_to_matrixmultiples the angle (np.pi/2 in this case)
by the unit vector of the axis (np.array([1, 0, 0]) or np.array([0, 1, 0]))
to get the Lie parameters (θx, θy, and θz) that are passed to the exponential
parameterization of the group SO(3) by the L = 1 generators.

iv. Describe what is happening in line 18 (square_gen_to_3d = ...) and why it’s nec-
essary to use to do to use square_gen to generate the symmetry of the cube?

Solution: We need to trivially promote the 2D representations to 3D to match
dimensions of the 3D rotations used to rotate the 2D square to 3D.
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v. We can follow an analogous procedure to generate the symmetry group of the tesseract
(4D cube) B4 with 384 elements. In this case, we need to add one additional generator
corresponding to single plane 4-fold rotation.

28 def so4_generators():

29 ...

30

31 so4_gen = so4_generators() # Get the 6 generators

32 # Assume 4D coords are (x, y, z, w)

33 so4_gen_labels = [’Lxy’, ’Lxz’, ’Lxw’, ’Lyz’, ’Lyw’, ’Lzw’]

34

35 rot_90_4D = scipy.linalg.expm(np.pi/2 * so4_gen[so4_gen_labels.index(???)])

36

37 cube_gen_to_4d = rep.direct_sum(cube_gen, np.ones([len(cube_gen), 1, 1]))

38

39 tesseract_gen = np.concatenate([cube_gen_to_4d, rot_90_4D[np.newaxis]])

40

41 tesseract_group = groups.generate_group(tesseract_gen)

42 print("Tesseract group 4D vector rep: ", tesseract_group.shape)

43 >> Tesseract group 4D vector rep: (384, 4, 4)

Based on the procedure we used above to generate the symmetry of the cube from the
symmetry of the square, give the labels of the three SO(4) generators (three strings
in so4_gen_labels) that we could plug into the ???s in line 35 to generate the group
of the tesseract. Explain your reasoning.

Solution: We can use any generator that mixes x, y, or z with w, i.e. Lxw, Lyw,
or Lzw. This “pops” up the cube into the 4th dimension.
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(b) Summarizing from above:

• D4 is the symmetry group of the square in 2D (order 8),

• Oh is the symmetry group of the cube in 3D (order 48),

• B4 is the symmetry group of the tesseract in 4D (order 384).

i. How does one construct the left cosets of a group G with respect to a subgroup H?
Give the number of cosets and the number of elements per coset in terms of
the size of G and H, i.e. |G| and |H|.

Solution: Left cosets are the set of sets of elements constructed from, gH =
{gh for an element in G} for all elements in G. There are |G|

|H| cosets and each

coset has |H| elements.

ii. D4 partitions the elements of the group Oh into 6 distinct cosets |Oh|/|D4| = 6. Con-
sider the square as one face of a cube. What do these cosets represent geometrically?
Explain your reasoning.

Solution: The cube has 6 faces, and each face has internal symmetry isomorphic
to D4. But the full cube group Oh also includes symmetries that map one face to
another. So the cosets Oh/D4 correspond to which face is “selected”. There are
6 such cosets, so |Oh| = 6 · 8 = 48.

iii. The tesseract is alternatively called the 8-cell because it can be thought of as built
from 8 cubes. |B4|/|Oh| = 8. What do these cosets represent geometrically?

Solution: The tesseract has 8 cube-shaped cells. Each has symmetry group Oh,
but the full symmetry group B4 includes symmetries that permute the cells. So
the cosets B4/Oh correspond to which cube you’re in. Hence |B4| = 8 · 48 = 384.
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(c) If we try to get irreps of B4 using our function rep.infer_irreps our python kernel
quickly runs out of memory. Let’s see why.

i. If |B4| is 384, what are the 3 dimensions of regular representation of |B4|?

Solution: Since |B4| is 384, the regular representation has shape (384, 384, 384).

ii. At some point, rep.infer_irreps calls linalg.infer_change_of_basis(reg_rep, reg_rep)

where reg_rep is the regular representation. What is the shape (dimensions) of each
matrix produced when linalg.infer_change_of_basis computes the Kronecker
sum of each element of reg_rep (reg_rep[i] for i in range(384)) with itself? Ex-
plain your reasoning.

Solution: The shape of a Kronecker sum of two square matrices M × M and
N ×N has shape (MN)× (MN). In this case, each element is represented by an
384 × 384 matrix so the resulting matrix from the Kronecker sum is 3842 × 3842

so 3844 total numbers.

iii. Suppose we are using float32 numbers (4 bytes) to represent this matrix. Note that
1004 × 4 bytes = 400 × 106 bytes = 400 megabytes (MB). Give a rough estimate
(within an order of magnitude) for how much memory in gigabytes (GB) = 109 bytes
each of these matrices takes to store.

Solution:

384 = 3.84× 102 (1)

(3.84× 102)4 = (3.84)4 × 1004 (2)

≈ 44 × 1004 = 28 × 1004 = 256× 1004 float32 numbers (4 bytes / number)
(3)

256× 400 megabytes (MB) ≈ 100 GB.
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(d) To compute the irreps of B4, Prof. Smidt instead created a new function that takes
inspiration from lie.infer_irreps_from_tensor_products to create a new function
infer_irreps_from_tensor_products_of_vector_rep that uses the vector matrix rep-
resentation rather than generators.

i. Why can’t we use lie.infer_irreps_from_tensor_products directly to get the ir-
reps of B4?

Solution: B4 is a finite group and not parameterizable by continuous parameters
which is required for a Lie group.

ii. B4 has 20 conjugacy classes. The Wonderful Orthogonality Theorem for Character
tells us that the number of conjugacy classes directly tells us the number of irreps of
a group. How many irreps must B4 have? Explain how the Wonderful Orthogonality
Theorem for Character gives this constraint.

Solution: The Wonderful Orthogonality Theorem for Character tells us the num-
ber of conjugacy classes equals the number of irreps of the group. Since the char-
acters of the conjugacy classes for a given irrep gives an N dimensional vector and
the characters or distinct irreps are orthogonal to one another, the max number
of irreps we can have equals the number of conjugacy classes. Furthermore (and
optional for students to express), we know that in order to ensure that any vec-
torspace is uniquely decomposable into irreps, the irreps must span this space (so
we also can’t have less than N irreps).
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(e) In Exam 2, you examined the irrep basis functions for the faces of the cube. The six basis
functions spanned 3 distinct irreps of Oh: one 1D irrep, one 2D irrep and one 3D irrep.
The irrep basis functions for the 8 cells of the tesseract look very analgous to these basis
functions and also span 3 distinct irreps of B4: one 1D irrep, one 3D irrep, and one 4D
irrep. We give the plots of the cube face and tesseract cell coefficients side by side below.

Figure 3: (Left) Cube face basis functions from Exam 2 (Right) Tesseract cell basis functions

i. If the 2D irrep basis functions 1 and 2 for the cube faces (Left) are proportional to the
polynomials y2 − z2 and 2x2 − y2 − z2, respectively, what polynomials in (x, y, z, w)
are the 3D irrep basis functions 1, 2, and 3 for the tesseract cells (Right) proportional
to, according to the right plot above? Indicate which polynomial corresponds to each
basis function.

Solution: The basis functions are proportional to (3x2− y2− z2−w2, 2y2− z2−
w2, z2 − w2), respectively.

ii. If the 3D irrep basis functions 3, 4, and 5 for the cube faces (Left) are proportional to
the polynomials z, y, x, respectively, what polynomials in (x, y, z, w) are the 4D irrep
basis functions 4, 5, 6, and 7 for the tesseract cells (Right) proportional to, according
to the right plot above? Indicate which polynomial corresponds to each basis function.

Solution: The basis functions are proportional to (x, y, z, w), respectively.
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