
6.S966: Practice Exam 1, Spring 2024

These are practice problems for Exam 1. They will likely take you
longer than the actual exam as some of the problems are

explicitly more tedious or difficult than what you will see in an
exam setting. The hope is that these problems give you extra
practice for exam-like questions and also encourage you to dive
deeper into certain material. If you have questions - come to

office hours and / or post on Piazza!

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

1

Name:

Question Points Score

1 20

2 20

3 20

4 20

5 20

Total: 100

Page 2

Name:

Sudoku for Group Theorists

1. (20 points) Complete the following multiplication and character tables below using the Rear-
rangement Theorem and the First and Second Wonderful Orthogonal Theorems for Character.

(a) Complete the following multiplication table.

0 1 2 3 4 5 6 7

0 4 6 2 3 0 5

1 4 2 5 0 7 1 3

2 7 5 6 4 3 1 0

3 6 4 5 1 7 3 2

4 2 7 3 5 0 4 6

5 3 6 1 7 0 2 5 4

6 0 1 2 3 5 6

7 5 3 0 2 6 4 7 1

(b) Cyclic groups are only irreducible over complex numbers (rather than real numbers),
but have all 1D irreps. Complete the table below for the cyclic group C3 where A1

is the trivial irrep and A2 and A3 are (complex) 1D representations. ω = ei2π/3 and
ω2 = ei4π/3 = e−i2π/3. Hint: 1 + ω + ω2 = 0.

E C3 (C3)
2

A1

A2 ω ω2

A3 ω2

Page 3

Name:

Parsing Proofs

2. (20 points) In this problem, we will present a single step of some of the proofs shown in class,
exercises, or notes and ask what properties of matrices or groups or lemmas or theorem, allows
us to take this step.

(a) Part 1 of Schur’s lemma states that if a square matrix M commutes with all the elements
of an irreducible representation, then it must be of the form λI for some λ.

The proof follows the following steps:

1. Every representation is similar to one with only hermetian matrices

2. if M computes with a set Hermetian matrices, so do M1 = M + M∗ and M2 =
i(M −M∗)

3. Each of M1 and M2 is hermitian. So they must be diagnolizable

4. If a Matrix Mi commutes with a diagonal matrix D. Then either Mi has block
diagonal form, or D is constant

5. Every matrix in an irrep must be full rank.

i. Let f be any class function, andD be an irreducible representation. (f(g) = f(h−1gh)∀g, h ∈
G). Show that X =

∑
g∈G

f(g)D(g) is a constant matrix.

ii. Find the constant in the matrix above in terms of the character of the irreducible
reprsentation and the function f

iii. Argue if D is not reducible, then if we take a similarity transform giving it block
diagonal form where each block is an irrep. Then each block of X would still be a
constant matrix with the same constant you found above.

Page 4

Name:

iv. Argue that the characters of the irreducible representations in the regular representa-
tion must span the space of all class functions.
Hint: consider the orthognal complement, and compute X in two ways.

(b) The Wonderful Orthogonal Theorem can be written in two ways.∑
R

D
(Γj)
µν (R)D

(Γj′)

ν′µ′ (R
−1) =

h

lj
δΓjΓj′ δµµ′δνν′ (1)

∑
R

D
(Γj)
µν (R)[D

(Γj′)

µ′ν′ (R)]
∗ =

h

lj
δΓjΓj′ δµµ′δνν′ if the representations are unitary. (2)

i. Use properties of unitary matrices to derive line (2) from line (1).

ii. We then proceeded to equate∑
R

∑
µ

D
(Γj)
µν (R)D

(Γj′)

ν′µ (R−1) =
∑
R

∑
µ

D
(Γj)
ν′µ (R−1)D

(Γj′)
µν (R) (3)

Why were we able to reorder the representations in line (3)?

Page 5

Name:

(c) In our proof of Case 2 of the Wonderful Orthogonality Theorem (lj = lj′ and Γj = Γj′)
we arrived at the following equation:

c′′νν′δµµ′ =
∑
R

D
(Γj′)
µν (R)D

(Γj′)

ν′µ′ (R
−1), where c′′νν′ =

c

c′νν′
(4)

We then chose µ = µ′ and summed over µ to start solving for c′′νν′

c′′νν′
∑
µ

δµµ = c′′νν′ lj′ =
∑
R

∑
µ

D
(Γj′)
µν (R)D

(Γj′)

ν′µ (R−1) (5)

where lj′ is the dimension of the Γ(j′) representation.

i. Why were we allowed to make this choice (µ = µ′) and perform this sum over µ?

ii. We then proceeded to equate∑
R

∑
µ

D
(Γj′)
µν (R)D

(Γj′)

ν′µ (R−1) =
∑
R

∑
µ

D
(Γj′)

ν′µ (R−1)D
(Γj′)
µν (R) =

∑
R

D
(Γj′)

ν′ν (R−1R)

(6)

Why were we able to reorder the representations in this expression?

Page 6

Name:

(d) In class, we proved that group convolution with respect to group G is equivalent under it’s
action. In particular:

Lg(f) ⋆ ψ = Lg(f ⋆ ψ) (7)

Where Lgf(x, y) = (g−1 ◦ f)(x, y) = f(g−1x, g−1y).

i. If the group H ⊂ G is the group of symmetries of the image function
f(Lh(f) = f,∀h ∈ H). Argue that the correlation (with respect to group G) is
invariant under H.

ii. In general, What subset of G is group convolution (with respect to G) invariant under
when the input image is symmetric under group H? briefly explain your reasoning.

Page 7

Name:

Isomorphisms of Multiplication Tables of Order 8

3. (20 points) Below are five group multiplication tables of groups of order 8. Here, we are using
various symbols instead of numbers, so it is clear in your answers which table you are giving
answers to.

a b c d f g h j

a c f j h d a b g
b f c d g j b a h
c j d g b h c f a
d h g b c a d j f
f d j h a g f c b
g a b c d f g h j
h b a f j c h g d
j g h a f b j d c

Table 1

α β γ δ ϵ ζ η θ

α θ η ζ ϵ δ γ β α
β η θ ϵ ζ γ δ α β
γ ζ δ θ β η α ϵ γ
δ ϵ γ η α θ β ζ δ
ϵ δ ζ β θ α η γ ϵ
ζ γ ϵ α η β θ δ ζ
η β α δ γ ζ ϵ θ η
θ α β γ δ ϵ ζ η θ

Table 2

① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧

② ② ① ④ ③ ⑥ ⑤ ⑧ ⑦

③ ③ ④ ① ② ⑦ ⑧ ⑤ ⑥

④ ④ ③ ② ① ⑧ ⑦ ⑥ ⑤

⑤ ⑤ ⑥ ⑦ ⑧ ① ② ③ ④

⑥ ⑥ ⑤ ⑧ ⑦ ② ① ④ ③

⑦ ⑦ ⑧ ⑤ ⑥ ③ ④ ① ②

⑧ ⑧ ⑦ ⑥ ⑤ ④ ③ ② ①

Table 3

⃝ 2 △ ⋄ D 7 8 ⋆

⃝ 2 D ⋆ 8 △ ⋄ ⃝ 7
2 D △ 7 ⃝ ⋆ 8 2 ⋄
△ ⋆ 7 8 D ⋄ 2 △ ⃝
⋄ 8 ⃝ D 7 2 ⋆ ⋄ △
D △ ⋆ ⋄ 2 7 ⃝ D 8
7 ⋄ 8 2 ⋆ ⃝ △ 7 D
8 ⃝ 2 △ ⋄ D 7 8 ⋆
⋆ 7 ⋄ ⃝ △ 8 D ⋆ 2

Table 3

�] ^ _ � ` a b
� � � `] _ a b ^
] �] ^ _ � ` a b
^ b ^ � ` a �] _
_] _ b � � ^ ` a
� _ � a �] b ^ `
` ^ ` _ a b � �]
a ` a] b ^ _ � �
b a b � ^ `] _ �

Table 5

Page 8

Name:

(a) Give the symbol that corresponds to the identity element for each table

(b) For each symbol, give it’s inverse.

a−1 →
b−1 →
c−1 →
d−1 →
f−1 →
g−1 →
h−1 →
j−1 →

α−1 →
β−1 →
γ−1 →
δ−1 →
ϵ−1 →
ζ−1 →
η−1 →
θ−1 →

①−1 →
②−1 →
③−1 →
④−1 →
⑤−1 →
⑥−1 →
⑦−1 →
⑧−1 →

⃝−1 →
2−1 →
△−1 →
⋄−1 →
D−1 →
7−1 →
8−1 →
⋆−1 →

�−1 →
]−1 →
^−1 →
_−1 →
�−1 →
`−1 →
a−1 →
b−1 →

Page 9

Name:

(c) What is the order of each element of a group? Reminder, the order of an element is how
many times you must multiply the element by itself to return to the identity.

a→
b→
c→
d→
f →
g →
h→
j →

α→
β →
γ →
δ →
ϵ→
ζ →
η →
θ →

①→
②→
③→
④→
⑤→
⑥→
⑦→
⑧→

⃝ →
2 →
△ →
⋄ →
D →
7 →
8 →
⋆→

�→
]→
^→
_→
�→
`→
a→
b→

(d) Are any of these groups isomorphic to one another? Explain your reasoning.

Page 10

Name:

A Group and its Characters

4. (20 points) In this problem you will generate a group and compute its character table.

(a) Generate a group using the following 2D mirror and rotation.(
−1 0
0 1

)
Mirror across y = σy

(
cos

(
π
2

)
− sin

(
π
2

)
sin

(
π
2

)
cos

(
π
2

))
=

(
0 −1
1 0

)
Counterclockwise rotation by π

2 = C
(1)
4

Express all elements as 2x2 matrices and label each operations using the following notation

e for the identity, C2 for in-plane two-fold rotations, C
(j)
4 for in-plane counterclockwise

four-fold rotations where j is 1 or 3 (Note, C2 = C
(2)
4 , i for 2D inversion, σx=y for a mirror

across the line x = y, σx=−y for a mirror across the line x = −y, σx for a mirror across
the line x, and σy for a mirror across the line y.

(b) This group has 5 conjugacy classes. Give the sets of elements in each conjugacy class. For

example if both C
(1)
4 and C

(3)
4 form a conjugacy class, then the conjugacy class is the set

{C(1)
4 , C

(3)
4 }.

Page 11

Name:

(c) Compute the trace of the 2D rotation and mirror representations you generated in Part
(a) for each conjugacy class. This representation is irreducible. Label which trace belongs
to which class.

(d) Using the constraint
∑

j l
2
j = h where lj is the dimension of the jth irrep and h is the order

(size) of the group, determine the dimensions of the irreps of this group.

(e) Complete the character table below. Γ1 is the trivial representation and Γ2 is the irrep
that transforms as your 2D representation of 2D mirrors and rotations from part (a).

• Label the conjugacy classes as the sets of elements in the conjugacy class. For example,

label the conjugacy class of C
(1)
4 and C

(3)
4 as {C(1)

4 , C
(3)
4 }. The ordering of the classes

does not matter, but using the same order as the instructions for part (a).

• Label the missing irreps as Γ′
1, Γ

′′
1, ... for other 1D irreps and Γ′

2, Γ
′′
2 ... for 2D irreps,

as needed. You do not need to worry about absolute ordering, only that the irreps
are labeled by the correct dimension.

• Give the characters for the missing irreps using the Wonderful Orthogonality Theorem
for Character and what you know about the characters for Γ1 and Γ2.

e

Γ1 1 1 1 1 1

Γ

Γ

Γ

Γ2 2

Page 12

Name:

Interpreting Outputs

5. (20 points) In the following questions, we will present you code snippets using the functions
you have coded in the exercises and ask you to interpret what the outputs means. You may
assume the following has been imported.

import numpy as np

from symm4ml import groups, group_conv, linalg, rep, vis

import torch

(a) Try running the following, but it’s taking a long time to evaluate.

1 groups.generate_group(

2 np.array([

3 [0.99994517, -0.01047178],

4 [0.01047178, 0.99994517]

5]).reshape(1, 2, 2)

6)

Why is this code taking long to evaluate? Explain your reasoning.

(b) You run the following code snippet and it returns the following output.

1 p3_matrices = groups.permutation_matrices(3)

2 linalg.infer_change_of_basis(p3_matrices, p3_matrices)

3 >> array([[[5.77350269e-01, 0.00000000e+00, 0.00000000e+00],

4 [0.00000000e+00, 5.77350269e-01, 0.00000000e+00],

5 [0.00000000e+00, 0.00000000e+00, 5.77350269e-01]],

6

7 [[-3.70074342e-17, 4.08248290e-01, 4.08248290e-01],

8 [4.08248290e-01, 7.40148683e-17, 4.08248290e-01],

9 [4.08248290e-01, 4.08248290e-01, -3.70074342e-17]]])

Page 13

Name:

i. Explain what is happening in line (2).

ii. What does the output produced by line (2) tell us about the representation of the 3D
permutation matrices? Explain your reasoning.

(c) Suppose we have the following multiplication tables saved into table_dresselhaus and
table_perm, respectively.

What does the following output tell us about these two multiplication tables?

1 groups.isomorphisms(table_dresselhaus, table_perm)

2 >> {(0, 1, 2, 5, 3, 4),

3 (0, 1, 5, 2, 4, 3),

4 (0, 2, 1, 5, 4, 3),

5 (0, 2, 5, 1, 3, 4),

6 (0, 5, 1, 2, 3, 4),

7 (0, 5, 2, 1, 4, 3)}

Explain what the output means in the context of the rows and columns of the multiplication
tables above.

Page 14

Name:

(d) In the following snippet, we perform the eigenvalue decomposition of M .

1 M = np.array([[[1, 0, 0], [0, 2, 0], [0, 0, 2]]])

2 np.linalg.eigh(M)

3 >> EighResult(

4 eigenvalues=array([[1., 2., 2.]]),

5 eigenvectors=array([[[1., 0., 0.],

6 [0., 1., 0.],

7 [0., 0., 1.]]]))

Where the eigenvalues are eigenvalues and the eigenvectors are given as the columns of
eigenvectors. Use the re-express M as a sum of projector matrices created using the
eigenvectors multiplied by the appropriate eigenvalue. Simplify your expression so that
you only have one projector per unique eigenvalue.

Page 15

Name:

symm4ml Docstring listing

Modules listed in order: groups, group_conv, linalg, rep

groups.conjugacy_classes:

Returns the conjugacy classes of the group.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

Set of conjugacy classes. Each conjugacy class is a set of integers.

groups.factor_group:

Returns the factor group of the group.

Input:

table: np.array of shape [n, n] where entries correspond to indices of

group elements.

selfconj_sub: set of indices for self-conjugate subgroup.

Output:

Multiplication table of factor group of order n2 as sets of elements of

the group

np.array sets of ints of shape [n2, n2]

Multiplication table of factor group in terms of indices of right cosests

np.array of shape [n2, n2] where entries correspond to indices of first

dim of matrices.

groups.factors:

Returns the set of factors of n.

Input:

n: int

Output:

Set of integers that divide n.

Example:

factors(12) = {1, 2, 3, 4, 6, 12}

groups.generate_group:

Generate new group elements from matrices (group representations)

Input:

matrices: np.array of shape [n, d, d] of known elements

decimals: int number of decimals to round to when comparing matrices

Output:

group: np.array of shape [m, d, d], where m is the size of the resultant

group

groups.identity:

Returns the index of the identity element.

Input:

Page 16

Name:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

Index of identity element.

Raises:

ValueError("No or multiple identities") if there is no or multiple

identities.

groups.inverse_permutation:

Inverts a permutation.

Input:

p: np.array of shape [n], a permutation of the integers 0, ..., n-1

Output:

np.array of shape [n], the inverse permutation of p

groups.inverses:

Returns the indices of the inverses of each element.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

np.array of shape [n] where the ith entry is the index of the inverse of

the ith element.

Raises:

ValueError("Every element does not have one inverse") if there is no or

multiple inverses.

groups.is_associative:

Tests whether the multiplication table is associative.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

True if the table represents an associative binary operation, False

otherwise.

groups.is_closed:

Tests whether the multiplication table is closed.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

True if the table represents a closed binary operation, False otherwise.

groups.isomorphisms:

Finds all isomorphisms between two multiplication tables of same order.

Page 17

Name:

Input:

table_src: np.array of shape [n, n] where the entry at [i, j] is the index

of the product of the ith and jth elements in the source group.

table_dst: np.array of shape [n, n] where the entry at [i, j] is the index

of the product of the ith and jth elements in the destination group.

Output:

A set of isomorphisms encoded as tuples ‘‘h‘‘ of length ‘‘n‘‘.

Each element ‘‘h[i]‘‘ is the index of the image of the ith element in the

source group.

groups.left_coset:

Returns the left coset of the ith element.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

subgroup_indices: Indices of elements in the subgroup.

Output:

Set of left cosets for each element in the group. Each coset is

represented as a set of indices.

groups.make_multiplication_table:

Makes multiplication table for group.

Input:

matrices: np.array of shape [n, d, d], n matrices of dimension d that form

a group under matrix multiplication.

tol: float numberical tolerance

Output:

Group multiplication table.

np.array of shape [n, n] where entries correspond to indices of first dim

of matrices.

groups.permutation_matrices:

Generates all permutation matrices of n elements

Input:

n: int

Output:

matrices: np.array of shape [n!, n, n]

groups.permute_mul_table:

Multiplication table of the same group with a different ordering.

Tip: If your solution does not work, try with the inverse permutation.

Input:

table: np.array of shape [n, n]

perm: np.array of shape [n]

Output:

permuted multiplication table.

Page 18

Name:

np.array of shape [n, n]

groups.right_coset:

Returns the right coset of the ith element.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

subgroup_indices: Indices of elements in the subgroup.

Output:

Set of right cosets for each element in the group. Each coset is

represented as a frozenset of indices.

Example:

right_coset(np.array([[0, 1], [1, 0]]), {0}) == {frozenset({1}), frozenset

({0})}

groups.subgroups:

Find all subgroups of group.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Output:

Yields tuples of elements that form subgroup.

groups.surjective_homomorphisms:

Finds all surjective homomorphisms from one group to another.

Input:

table_src: np.array of shape [n_src, n_src] where the entry at [i, j] is

the index of the product of the ith and jth elements in the source

group.

table_dst: np.array of shape [n_dst, n_dst] where the entry at [i, j] is

the index of the product of the ith and jth elements in the destination

group.

Output:

A set of surjective homomorphisms encoded as tuples ‘‘h‘‘ of length ‘‘

n_src‘‘.

Each element ‘‘h[i]‘‘ is the index of the image of the ith element in the

source group.

groups.test_group:

Tests whether the multiplication table is valid.

Input:

table: np.array of shape [n, n] where the entry at [i, j] is the index of

the product of the ith and jth elements in the group.

Raises:

ValueError("Invalid indices") if the table contains invalid indices (is

not closed).

Page 19

Name:

ValueError("No or multiple identities") if the table does not contain

exactly one identity.

ValueError("Every element does not have one inverse") if not every element

has an inverse.

ValueError("Not associative") if the table is not associative.

group_conv.image2D_group_convolution:

Performs group convolution of inputs and filters over the regular representation

Input:

rep_2D: torch.Tensor of shape [|G|, 2, 2] of the group representation as 2

D rotations and mirrors

rep_reg: torch.Tensor of shape [|G|, |G|, |G|] of the left regular

representation

inverse: torch.LongTensor of shape [|G|] with the indices of the inverses

of the group elements

input: torch.Tensor of shape [batch, channel_in, rep_reg_in, height, width

]

filter: torch.Tensor of shape [channel_out, channel_in, rep_reg_filter,

kernel_height, kernel_width]

Output:

output: torch.Tensor of shape [batch, channel_out, rep_reg_out]

group_conv.image2D_group_convolution_filter_bank:

Creates rotated filter bank for 2D image convolution

Input:

rep_2D: torch.Tensor of shape [|G|, 2, 2] of the group representation as 2

D rotations and mirrors

filter: torch.Tensor of shape [channel_out, channel_in, rep_reg_filter]

group_conv.rep_reg_group_convolution:

Performs group convolution of inputs and filters over the regular representation

Input:

rep_reg: torch.Tensor of shape [|G|, |G|, |G|] of the left regular

representation

input: torch.Tensor of shape [batch, channel_in, rep_reg_in]

filter: torch.Tensor of shape [channel_out, channel_in, rep_reg_filter]

Output:

output: torch.Tensor of shape [batch, channel_out, rep_reg_out]

linalg.gram_schmidt:

Return the Gram-Schmidt orthonormalization of the vectors.

Input:

vectors: an (n1, d) matrix of n1 complex vectors of dimension d

tol: a tolerance for the zero vector

Output:

Q: an (n2, d) matrix of n2 orthonormal vectors, with n2 <= n1

Page 20

Name:

P: a (d, d) projector onto the span of the orthonormal vectors in Q

linalg.infer_change_of_basis:

Compute the change of basis matrix from X1 to X2.

tip: Use the function nullspace

Input:

X1: an (n, d1, d1) array of n (d1, d1) matrices

X2: an (n, d2, d2) array of n (d2, d2) matrices

Output:

Sols: An (m, d1, d2) array of m solutions.

Each solution is a (d1, d2) matrix that satisfies X1 @ S = S @ X2.

linalg.nullspace:

Return the nullspace of the matrix.

Input:

matrix: an (n, d) matrix of n complex vectors of dimension d

tol: a tolerance for the zero eigenvalue

Output:

Q: an (m, d) matrix containing orthogonal vectors spanning the nullspace (

obtained by Gram-Schmidt)

P: a (d, d) projector onto the span of the nullspace

linalg.orthogonal_complement:

Return orthogonal vectors spanning the orthogonal complement of the span of the

input vectors.

Input:

vectors: an (n1, d) matrix of n1 complex vectors of dimension d

tol: a tolerance for the zero vector

Output:

Q: an (n2, d) matrix of n2 orthonormal vectors spanning the orthoganl

complement, with d - n1 <= n2 <= d

P: a (d, d) projector onto the orthogonal complement of the input vectors

linalg.projector:

Return the projector onto the vector v.

Input:

v: a d dimensional complex vector

Output:

P: a rank 1 matrix such that P @ v = v

rep.are_isomorphic:

Checks if representations are isomorphic.

Input:

rep1: np.array [n, d, d] representation of group. rep1[i] is a matrix that

represents i-th element of group.

rep2: np.array [n, d, d] representation of group. rep2[i] is a matrix that

Page 21

Name:

represents i-th element of group.

You can assume that rep1 and rep2 are valid group representations.

Output:

True if representations are isomorphic.

rep.check_orthogonality_theorem:

Checks orthogonality theorem for a set of input representations.

Input:

irreps: List of representations, np.arrays of shape [n, d, d], where n is

the order of group and d is the dimension of the representation. Not

necessarily irreducible!

Output:

True if the theorem holds (i.e. the representations in the list are

irreducible, unitary and pairwise orthogonal and have the appropriate

self-inner product), False otherwise.

rep.direct_sum:

Computes direct sum of two representations.

Input:

rep1: np.array [n, d1, d1] representation of group. rep[i] is a matrix

that

represents i-th element of group.

rep2: np.array [n, d2, d2] representation of group. rep[i] is a matrix

that

represents i-th element of group.

You can assume that rep1 and rep2 are valid group representations.

Output:

Direct sum of representations. np.array [n, d1 + d2, d1 + d2].

rep.is_a_representation:

Checks if rep is a representation of the group represented by a given

multiplication table.

Input:

table: np.array [n, n] where table[i, j] = k means i * j = k.

rep: np.array [n, d, d] describing a possible representation of the group.

rep[i] is a matrix corresponding to the action of the i-th element of

the group.

Output:

True if rep is a representation.

rep.is_an_irrep:

Checks if rep is an irreducible representation of group represented by

multiplication table.

Input:

table: np.array [n, n] where table[i, j] = k means i * j = k.

rep: np.array [n, d, d] representation of group. rep[i] is matrix that

Page 22

Name:

represents i-th element of group.

Output:

True if rep is an irreducible representation.

rep.regular_representation:

Returns regular representation for group represented by a multiplication table.

Input:

table: np.array [n, n] where table[i, j] = k means i * j = k.

Output:

Regular representation. array [n, n, n] where reg_rep[i, :, :] = D(i) and

D(i)e_j = e_{ij}.

Equivalently, D(g) |h> = |gh>

Page 23

Name:

Work space

Page 24

Name:

Work space

Page 25

