
6.S966: Practice Exam 2, Spring 2024

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 20

2 20

3 20

Total: 60

1

Name:

A not-so-fully-connected neural network

1. (20 points) In this problem, you will determine how we should parameterize weights to make
neural network operations equivariant, i.e. commute with group action.

In a fully-connected (or dense) neural network, layers are built from two operations: a matrix
acts on the input vector and then an activation function is applied to the resulting vector.

(a) Let’s first consider the linear operation (matrix acting on the input vector). A weights
matrix W is a linear map from W : ρin → ρout and thus has shape ρout × ρin, i.e. the rows
span ρout and the columns span ρin.

To commute with group action W must satisfy the following,

W ρout×ρinDρin(g)xρin = Dρout(g)W ρout×ρinxρin . (1)

where Dρ is the matrix representation for representation vector space ρ and is therefore a
ρ× ρ matrix.

Schur’s Lemma tell us the conditions under which a matrix W commutes with a group
representation D(g)

i. Suppose ρin and ρout are equivalent irreducible representation vector spaces in the
same basis. What must W be for the above equation to hold? Explain your reasoning.

Solution: Schur’s Lemma tells us that only constant matrices commute with
irreducible representations, thus W must be a constant matrix, i.e. c1

ii. Suppose ρin and ρout are inequivalent irreducible representations. What must W be
for the above equation to hold? Explain your reasoning.

Solution: Schur’s Lemma tells us there is no linear mapping between inequivalent
irreps, thus W must be a null matrix, i.e. zero.

Page 2

Name:

(b) In each of the following subparts, we will give you the representations of ρin and ρin as
direct sums of irreps labeled A, B, J , or K.

• A and B are distinct one-dimensional irreps

• J and K are distinct two-dimensional irreps

Use lower case Latin letters (a, b, . . . , z) to label distinct weights. You may leave entries
blank or use zeros to indicate zeros.

i. ρin = A⊕B , ρout = A⊕A⊕B

Solution:

ii. ρin = J , ρout = K

Solution:

iii. ρin = J ⊕ J , ρout = A⊕ J

Solution:

Page 3

Name:

(c) Now, let’s think about what we need to do to make activation functions equivariant.

For simplicity, let’s assume we want to be equivariant to C4 (90 degree rotations) is a
2D vector which does not transform as the trivial representation. To be equivariant, our
activation function σ must satisfy the following property.

σ(Dρoutyρout) = Dρoutσ(yρout) (2)

A common activation function is the Rectified Linear Unit (ReLU), ReLU(x) = max(0, x).

Is this activation function equivariant (satisfying Eqn. 2)? You may find it useful to
consider the 2D vector (1, 0) and it’s rotations under C4, (0, 1), (−1, 0), and (0,−1).

Solution: This function is not equivariant. It will output for example (1, 0) for input
(1, 0) but (0, 0) if input is rotated to be (−1, 0) and the order of the rotation (before
or after the activation matters) thus does not satisfy the equation above.

(d) What property of the 2D vector could we apply any activation function to as long as we
are considering groups that can be represented with unitary transformations?

Solution: By definition, unitary transformations preserve the norm of a vector, thus
the norm is invariant under unitary transformations, so we can safely act on it with
any function.

Page 4

Name:

Cartesian Tensors

2. (20 points) In 3D Euclidean space, the standard basis is

x̂ =

1
0
0

 ŷ =

0
1
0

 ẑ =

0
0
1

 (3)

A Cartesian Tensor is a tensor has indices over the standard basis. For example

• A 3D vector is a Cartesian Tensor with one index vi → v⃗ = (vx, vy, vz)

• A 3x3 matrix is a Cartesian Tensor with two indices Mij .

• a 3x3x3 matrix is a Cartesian Tensor with three indices Mijk.

Cartesian Tensors of more than one index can be thought of as a tensor product representa-
tion of vector representations, i.e. ρM = ρv⃗ ⊗ ρv⃗. We can decompose these tensor product
representation to understand what irreps these Cartesian Tensors are made of.

A valid set of generators for SO(3) on the (irreducible) vector representation, i.e. L = 1, is

so3_vec = np.array([

[[0, 0, 0.],

[0, 0, -1],

[0, 1, 0]],

[[0, 0, 1],

[0, 0, 0],

[-1, 0, 0]],

[[0, -1, 0],

[1, 0, 0],

[0, 0, 0]],

])

We can infer the first 5 irreps of SO(3) using

so3_irreps = lie.infer_irreps_from_tensor_products(so3_vec, n=5)

We can compute the tensor product representations of 2, 3, and 4 index Cartesian Tensors
using

so3_vec_vec = lie.tensor_product(so3_vec, so3_vec)

so3_vec_vec_vec = lie.tensor_product(so3_vec_vec, so3_vec)

so3_vec_vec_vec_vec = lie.tensor_product(so3_vec_vec_vec, so3_vec)

Page 5

Name:

(a) We execute the following code

for i in range(5):

print(i, linalg.infer_change_of_basis(so3_irreps[i], so3_vec_vec).shape)

> 0 (1, 1, 9)

> 1 (1, 3, 9)

> 2 (1, 5, 9)

> 3 (0, 7, 9)

> 4 (0, 9, 9)

What do the outputs of linalg.infer_change_of_basis indicate when one input is an
irreducible representation like so3_irreps[i] and the other input is a reducible represen-
tation like so3_vec_vec?

i. What is the significance of the first value of the shape (shape[0]) of the outputs of
linalg.infer_change_of_basis?

Solution: The first value of the shape indicates how many copies of that irrep
are contained in the reducible representation.

ii. What is the significance of the second value of the shape (shape[1]) of the outputs
of linalg.infer_change_of_basis?

Solution: The second value of the shape indicates the dimension of the first
argument, in this case so3_irreps[i] which is equal to 2L+ 1.

iii. What is the significance of the third value of the shape (shape[2]) of the outputs of
linalg.infer_change_of_basis?

Solution: The third value of the shape indicates the dimension of the second
argument, in this case 3n where n = 2 for two index Cartesian Tensors.

Page 6

Name:

(b) What do these outputs tell us about the tensor product representation of two index Carte-
sian Tensors (3× 3 matrices)?

Solution: The representation of two index Cartesian tensors is a direct sum of (L =
0)⊕ (L = 1)⊕ (L = 2)

(c) Does decomposition of the reducible tensor product representation into a direct sum over
irreps preserve dimension? Use the outputs from above to check this. Explain your
reasoning.

Solution: The decomposition of a reducible representation into irreps preserves di-
mension because irreps span the space of all representations. A 3 × 3 matrix has 9
entries, so 9 degrees of freedom. A scalar (L = 0) is 1 dimensional, a vector is (L = 1)
is 3 dimensional and L = 2 is 5 dimensional. 1 + 3 + 5 = 9, therefore all degrees of
freedom are accounted for.

Page 7

Name:

(d) We execute the following code

for i in range(5):

print(i, linalg.infer_change_of_basis(so3_irreps[i], so3_vec_vec_vec).shape)

> 0 (1, 1, 27)

> 1 (3, 3, 27)

> 2 (2, 5, 27)

> 3 (1, 7, 27)

> 4 (0, 9, 27)

What do these outputs tell us about the tensor product representation of three index
Cartesian Tensors (3× 3× 3 tensors)?

Solution: The representation of two index Cartesian tensors is a direct sum of (L =
0)⊕ 3× (L = 1)⊕ 2× (L = 2)⊕ 1× (L = 3)

(e) We execute the following code

for i in range(5):

print(i, linalg.infer_change_of_basis(so3_irreps[i], so3_vec_vec_vec_vec).shape)

> 0 (3, 1, 81)

> 1 (6, 3, 81)

> 2 (6, 5, 81)

> 3 (3, 7, 81)

> 4 (1, 9, 81)

What do these outputs tell us about the tensor product representation of three index
Cartesian Tensors (3× 3× 3 tensors)?

Solution: The representation of two index Cartesian tensors is a direct sum of 3×(L =
0)⊕ 6× (L = 1)⊕ 6× (L = 2)⊕ 3× (L = 3)⊕ 4× (L = 3)

Page 8

Name:

(f) The selection rules for tensor products decompositions of irreps of SO(3), l1⊗ l2 → l3, can
be expressed as |l1 − l2| ≤ l3 ≤ l1 + l2. Given this, what is the maximum irrep contained
in an n-index Cartesian Tensor. Explain your reasoning.

Solution: The maximum irrep contained in an n-index Cartesian Tensor is L = n.
To see this we can can use induction. The max irrep from 1⊗ 1 → 2. The max irrep
from 2⊗ 1 → 3. The max irrep from (n− 1)⊗ 1 → n.

(g) The irreps of a group are often reducible under the symmetries of a subgroup. For exam-
ple, under spherical symmetry, only the irrep L = 0 is trivial. If a tensor has spherical
symmetry, only components that transform as L = 0 can be nonzero.

Note: The symmetry of the tensor is different from the symmetry of the representations
for how a tensor transforms, this is identical to the distinction between the symmetry of
coordinate systems, versus the symmetry of “objects” in 3D space. The “symmetry of a
tensor” is the later. The indices of the tensor still transform a representation of SO(3)
regardless of the tensor’s symmetry

Under octahedral symmetry Oh (a subgroup of L = 0), L = 0 is still trivial but so are
components of L = 4 (and components of higher Ls). What is the minimum number of
indices a Cartesian tensor needs to be able to distinguish whether a tensor has spherical
versus octahedral symmetry.

Solution: Because the maximum irrep contained in an n-index Cartesian Tensor is
L = n. We would need at least an n = 4 index Cartesian Tensor to distinquish
between spherical symmetry. Fun fact, this is why certain properties (e.g. strain,
susceptibility, moment of inertia tensor are all 3 × 3 matrices) of physical systems
are called “isotropic” even if the system does not have spherical symmetry – only the
L = 0 transforming components are non-zero and the property may not require high
enough irreps to distinguish the difference between full spherical symmetry and high
symmetry subgroups.

Page 9

Name:

The Representations of SU(2)

3. (20 points) The special unitary group in 2 dimensions, SU(2), comprises complex 2×2 matrices
with determinant 1 and satisfy U †U = 1 where U † is the conjugate transpose.

SU(2) is a Lie group and a valid set of generators of this group are

σx =

(
0 i
i 0

)
σy =

(
0 −1
1 0

)
σz =

(
i 0
0 −i

)
(4)

(a) These generators are irreducible. How can we tell? Explain your reasoning.

Solution: These matrices cannot be simultaneously diagonalized, i.e. while σz is
diagonal, σx and σy are not.

(b) Compute the following commutators of the generators: [σx, σy], [σy, σz], and [σz, σx].

Solution:

[σx, σy] =

(
i 0
0 −i

)
= σz (5)

[σy, σz] =

(
0 i
i 0

)
= σx (6)

[σz, σx] =

(
0 −1
1 0

)
= σy (7)

(c) Given what you computed above, express the Lie algebra for this group. You may find it
handy to use the Levi-Civita symbol ϵijk, where ϵijk = 0 if ijk contain repeated indices
e.g. xxz, ϵijk = 1 for ijk equal to even permutations of xyz, e.g. zxy, and ϵijk = −1 ijk
equal to odd permutations of xyz, e.g. yxz. Does this Lie algebra look familiar? Why or
why not?

Solution: This yields the same Lie Algebra we recovered for SO(3)! [σi, σj] = ϵijkσk

Page 10

Name:

(d) We can perform tensor product decompositions of the generators to find irreps of the group
SU(2). We will define the generators for SU(2) the same as above except we will add a
factor of 1

2 which we will explain later.

su2_generators = np.array([

[[0, 1j],

[1j, 0]],

[[0, -1],

[1, 0]],

[[1j, 0],

[0, -1j]],

]) / 2.

Using the definition of so3_generators from the previous problem, we execute the fol-
lowing code

so3_irreps = lie.infer_irreps_from_tensor_products(so3_generators, n=4)

for ir in so3_irreps:

print(ir.shape)

> (3, 1, 1)

> (3, 3, 3)

> (3, 5, 5)

> (3, 7, 7)

And similarly for SU(2)

su2_irreps = lie.infer_irreps_from_tensor_products(su2_generators, n=7)

for ir in su2_irreps:

print(ir.shape)

> (3, 1, 1)

> (3, 2, 2)

> (3, 3, 3)

> (3, 4, 4)

> (3, 5, 5)

> (3, 6, 6)

> (3, 7, 7)

Page 11

Name:

i. Given that the dimensions of some of the irreps look similar, we try the following
lie.are_isomorphic(su2_irreps[2], so3_irreps[1])

> True

lie.are_isomorphic(su2_irreps[4], so3_irreps[2])

> True

lie.are_isomorphic(su2_irreps[6], so3_irreps[3])

> True

What does this tell us about the representations of SU(2) and SO(3)?

Solution: If generators are isomorphic, they describe the same irrep up to a
change of basis, therefore SU(2) shares some irreps with SO(3). In fact, SU(2)
contains all the irreps of SO(3).

ii. Suppose we had not added the factor of 1
2 to the SU(2) generators, or equivalently we

multiply our generators by 2.
lie.are_isomorphic(su2_irreps[2] * 2, so3_irreps[1])

> False

lie.are_isomorphic(su2_irreps[4] * 2, so3_irreps[2])

> False

lie.are_isomorphic(su2_irreps[6] * 2, so3_irreps[3])

> False

Why are these representations no longer isomorphic? How does this relate to how we
compute isomorphism of representations?

Solution: We compute isomorphism ultimately using linalg.infer_change_of_basis
which solves QS = RQ for two representations or in this case generators S and R.
If we scale S by c there’s no way for that c to be compensated by Q. This is why
we assume our representations to be unitary, to avoid issues with scaling factors.

Page 12

