
6.S966: Exam 1, Spring 2024

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 15

2 28

3 10

4 27

5 20

Total: 100

1



Name:

Isomorphisms of Multiplication Tables

1. (15 points) Below are three group multiplication tables. Here, we are using various symbols
instead of numbers, so it is clear in your answers, which table you are giving answers to.

_ � ^ e
_ � _ e ^
� _ � ^ e
^ e ^ � _
e ^ e _ �

Table 1

♣ ♢ ♠ ♡
♣ ♡ ♠ ♢ ♣
♢ ♠ ♡ ♣ ♢
♠ ♢ ♣ ♡ ♠
♡ ♣ ♢ ♠ ♡

Table 2

• ▲ ■ ⋆
• ⋆ ■ • ▲
▲ ■ ⋆ ▲ •
■ • ▲ ■ ⋆
⋆ ▲ • ⋆ ■

Table 3

(a) Give the symbol that corresponds to the identity element for each table

Solution: �, ♡, ■

(b) For each symbol, give it’s inverse.

Solution: _−1 → _
�−1 → �
^−1 → ^
e−1 → e

♣−1 → ♣
♢−1 → ♢
♠−1 → ♠
♡−1 → ♡

•−1 → ▲
▲−1 → •
■−1 → ■
⋆−1 → ⋆

(c) Two of the three tables represent groups that are isomorphic. Which table represents a
group that is not isomorphic to the other two? Explain your reasoning.

Solution: The easiest way to tell is that the order of all the elements of the group in
Table 1 and Table 2 is 2 (all elements are their own inverses). This is not the case for
Table 3.
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Parsing Proofs

2. (28 points) In this problem, we will present a single step of some of the proofs shown in class,
exercises, or notes and ask what properties of matrices or groups or lemmas or theorem, allows
us to take this step.

(a) In our proof of Schur’s Lemma Part 2, we are trying to prove the properties of matrix M
in the equation

MD(1)(R) = D(2)(R)M, (1)

for two unitary irreducible representations (irreps) of a group G, D(1) and D(2) and for all
R ∈ G. We start by taking the conjugate transpose of this equations.

[MD(1)(R)]† = [D(2)(R)M ]† (2)

= [D(1)(R)]†M † =M †[D(2)(R)]† (3)

= D(1)(R−1)M † =M †D(2)(R−1), (4)

i. What property of unitary matrices did we use between line (3) and (4)?

Solution: If the representations are unitary U−1 = U † = [U∗]T , thus [D(R)]† =
D(R−1)

ii. We multiply line (4) on the left by M

MD(1)(R−1)M † =MM †D(2)(R−1). (5)

Which line can we use above in lines (1 - 4) to arrive at

D(2)(R−1)MM † =MM †D(2)(R−1)? (6)

Explain your reasoning.

Solution: We can use line (1) to substitute MD(1)(R−1) for D(2)(R−1)M , Be-
cause this holds for all R ∈ G.

iii. Using the lemmas and theorems that you’ve learned in this class what can you say
about the matrix MM † in line (6)? Explain your reasoning.

Solution: Using Schur’s Lemma Part 1, we know that MM † must be constant
matrices, i.e. cδµν

(b) In our proof of the Wonderful Orthogonality Theorem we started with the following

M =
∑
R

D(Γj′ )(R)XD(Γj)(R−1) (7)
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where D(Γj′ ) and D(Γj) are representations of group G and X is an arbitrary matrix of size
lj′× lj , where lj′ and lj dimensions of the representations, respectively. We then multiplied

by D(Γj′ )(S) on both sides

D(Γj′ )(S)M =
∑
R

D(Γj′ )(S)D(Γj′ )(R)XD(Γj)(R−1) (8)

=
∑
R

D(Γj′ )(SR)XD(Γj)(R−1S−1)D(Γj)(S) (9)

=MD(Γj)(S) (10)

i. What property of groups did we use to go from line (8) to line (9)? Explain your
reasoning.

Solution: Because every element as an inverse, we are free to insert a copy of the
identity and express it as (the representation of) an element acting on its inverse.
Furthermore, groups are associative, so a(be) = (ab)e, so we are free to regroup
our representation.
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ii. What theorem did we use to go from line (9) to line (10)? Explain your reasoning.

Solution: The Rearrangement Theorem. M is defined as a sum over the group
and since sG = G, the sum over R is equivalent whether the arguments are R or
SR.

(c) Recall that we defined group correlation as:

[f ⋆ ψ](x, k) =
∑
y∈Z2

∑
i∈G

f(y, i)ψ(k−1(y − x), k−1i) (11)

We proved that this definition (11) satisfies equivalence as follows:

[Lg(f) ⋆ ψ](x, k) =
∑
y∈Z2

∑
i∈G

f(g−1y, g−1i)ψ(k−1(y − x), k−1i) (12)

let y′ = g−1y and i′ = g−1i

[Lg(f) ⋆ ψ](x, k) =
∑
y′∈Z2

∑
i′∈G

f(y′, i′)ψ(k−1(gy′ − x), k−1gi′) (13)

=
∑
y′∈Z2

∑
i′∈G

f(y′, i′)ψ((g−1k)−1(y′ − g−1x), (g−1k)−1i′) = Lg([f ⋆ ψ])(x, k) (14)

i. What properties have we relied on when when replacing
∑

i with
∑

i′ in going between
(12) and (13) ?

Solution: Rearrangement theorem

ii. What properties / assumptions have we made when replacing
∑

y with
∑

y′ in going
between (12) and (13)? If there’s any assumption made here, can you try to defend
why it’s a reasonable assumption?

Solution: We assume that the lattice {gz : z ∈ Z2} = Z2. Note that this is
required also for the definition of group correlation, as f and Ψ are both stored as
a grid of values. So we need the action of G to be such that it takes the lattice to
itself. We accepted two explanations for this assumption, most other explanations
got partial credit:

1. If the resolution is high enough, we can approximate values that are not on
the lattice by values on it.

2. g should be an action on Z2 and that’s a property of group action on sets
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Sudoku for Group Theorists

3. (10 points) Complete the character tables below using First and Second Wonderful Orthogonal
Theorems for Character given below, respectively.

∑
R

χ(Γj)(R)χ(Γj′ )(R−1) =
∑
k

Nkχ
(Γj)(Ck)[χ

(Γj′ )(Ck)]
∗ = hδΓjΓj′ (15)

∑
Γi

Nkχ
(Γi)(Ck)[χ

(Γi)(Ck′)]
∗ = hδkk′ . (16)

Γ are representations of the group, R is an element of the group, h is the size (order) of the
group, Ck is a conjugacy class, Nk is the size of a conjugacy class.

(a) Complete character table below where A1 represents the trivial irrep, and A2, B1, and B2

are 1D irreps.

Solution:

e C2 (z) σv(xz) σv(yz)

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

(b) Cyclic groups are only irreducible over complex numbers (rather than real numbers), but
have all 1D irreps. Complete the character table below for the cyclic group C5 where A1 is
the trivial irrep and A2 and A3 are (complex) 1D representations. ω = ei2π/5, ω2 = ei4π/5,
etc. Hint: 1 + ω + ω2 + ω3 + ω4 = 0

Solution:

E C5 (C5)
2 (C5)

3 (C5)
4

A1 1 1 1 1 1
A2 1 ω ω2 ω3 ω4

A3 1 ω4 ω3 ω2 ω
A4 1 ω2 ω4 ω ω3

A5 1 ω3 ω ω4 ω2
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Interpreting Outputs

4. (27 points) In the following questions, we will present you code snippets using the functions
you have coded in the exercises and ask you to interpret what the outputs means. You may
assume the following has been imported. The Docstrings for functions used in this problem are
available at near the end of your exam booklet, before the Work space pages.

import numpy as np

from symm4ml import groups, linalg, rep, vis

import torch

(a) In this problem, we will chain together several code snippets to determine properties of
two representations of the group D4, the rotation and mirror symmetries of a square.

i. Consider the following code snippet.
1 subset_D4 = np.array([

2 # mirror across y axis

3 [[-1., 0.],

4 [0., 1]],

5 # Four-fold (90 degree) rotation counterclockwise

6 [[np.cos(np.pi / 2), -np.sin(np.pi / 2)],

7 [np.sin(np.pi / 2), np.cos(np.pi / 2)]],

8 ])

9 D4 = groups.generate_group(subset_D4)

10 D4_table = groups.make_multiplication_table(D4)

11 D4_reg_rep = rep.regular_representation(D4_table)

Describe what is happening in lines 1-9.

Solution: We are using a subset of elements of D4 (represented as 2D rotations
and mirrors) to generate the entire group of D4.

ii. Describe how the (left) regular representation D4_reg_rep is constructed from D4_table

in line (10-11).

Solution: The left regular representation is constructed from the multiplication
table by first permuting the columns of the multiplication table to be the inverses
of the original columns. Then the representation of each element is simply con-
structed by inserting 1s where the entry matches the element we are constructing
the representation for or 0s otherwise.

iii. What are the dimensions (shape) of the representation of D4 and D4_reg_reg? Explain
your reasoning.

Solution: The shape of D4 is [8, 2, 2] because there are 8 elements of D4 and we
used 2× 2 matrices to generate the group. The regular representation of D4, i.e.
D4_reg_rep has shape [8, 8, 8] because the regular representations acts on a vector
space the same size as the group since we define it using the group multiplication
tables.
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iv. Now, we continue with the following code snippet.
12 M = linalg.infer_change_of_basis(D4, D4)

13 norm_M = M / np.max(np.abs(M))

14 norm_M[np.isclose(norm_M, -0.0)] = +0.0

15

16 vis.plot_image_values(

17 norm_M, norm_M, vmax=1, vmin=-1, colormap=’plasma’,

18 decimal_places=0, figsize=(1, 1), size=12,

19 fontcolor=[’white’, ’black’], fontcolor_cutoff=-0.1

20 );

21 >>

In line 13-14, we are simply normalizing the matrix by its absolute maximum value
and replacing -0s with +0s, so it’s nicer to visualize using the code in lines 16-20. You
can assume there are no rounding errors.

Describe what is happening in line 12 and explain the significance of
linalg.infer_change_of_basis returning a single matrix equal to a constant matrix
(identity multiplied by a constant). What does this tell us about the representation
of D4 as 2D rotations and mirrors? Explain your reasoning.

Solution: We are using the Kronecker sum to see whether there exists a change
of basis between the 2D representation of D4 consisting 2D rotations and mirrors
itself. Because linalg.infer_change_of_basis returns only a constant matrix,
by Schur’s Lemma, we know it is irreducible.

v. Finally, we finish with the following code snippet.
22 cob = linalg.infer_change_of_basis(D4, D4_reg_rep)

23 norm_cob = cob/np.max(np.abs(cob))

24 norm_cob[np.isclose(norm_cob, -0.0)] = +0.0

25

26 vis.plot_image_values(

27 norm_cob, norm_cob, vmax=1, vmin=-1, colormap=’plasma’,

28 decimal_places=0, figsize=(8, 2), size=12,

29 fontcolor=[’white’, ’black’], fontcolor_cutoff=-0.1

30 );

31 >>

Again line 23-24, we are simply normalizing the matrix by its absolute maximum value
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and replacing -0s with +0s, so it’s easier to visualize using the code in lines 26-30.
You can assume there are no rounding errors.

Describe what is happening in line 22. Why does
linalg.infer_change_of_basis(D4, D4_reg_rep) return two matrices?
What does this tell us about D4_reg_rep given what we know about D4 from part
(iv)? How does this align with what we know about the properties of the regular
representation from lecture?

Solution: We are using the Kronecker sum to see whether there exists a change
of basis between the 2D representation of D4 consisting 2D rotations and mirrors
and the regular representation of D4.
The regular representation contains a lj copies of each irrep j, where lj is the
dimension of irrep j, thus there are two copies of the 2D irrep of in the regular
representation, so two change of basis options, one for each.
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(b) Consider the following code snippet and output.

linalg.nullspace(np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]))

>> (array([[0., 1., 0.],

[0., 0., 1.]]),

array([[0., 0., 0.],

[0., 1., 0.],

[0., 0., 1.]]))

i. What does linalg.nullspace do and how are the first output
array([[0., 1., 0.], [0., 0., 1.]]) and the second output
array([[0., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) related?

Solution: linalg.nullspace finds vectors and a projector that span the space
of solutions Ax = 0.

ii. Is the first output unique (e.g. are there any other possible outputs that would also
be correct)? Explain your reasoning.

Solution: The first outputs are not unique. In the case of a single vector, we can
flip it’s sign. Additionally, if we have more that one vector, any rotation in the
subspace are valid spanning vectors of the null space.

iii. Is the second output unique? Explain your reasoning.

Solution: The second outputs are unique as it is the projection matrix onto the
entire subspace. It is invariant under rotations within the subspace.
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This Side Up

5. (20 points) After graduation, you join a startup building next generation photo digitizers.
Your first task is to implement a feature that automatically rotates square photos so that they
are in the right direction regardless of how users input the photo. You wonder if this task is
well-suited for group convolution.

(a) Assume the scanner scans a single side of square photos. What group should you use
to build your Group Convolutional Neural Network? You can use its shorthand name
or describe what elements are in the group. Feel free to draw a diagram. Explain your
reasoning.

Solution: C4, because we can’t invert physical pictures.

The intention of the problem is that the images were placed so that there sides are
parallel to the scanner (or that the scanner could find the edges of the image, but
not properly orient content), but since it might not have been clear we also accepted
SO(2)

Note that the group convolution we studied in class does not work on infinite groups.

(b) Recall that group convolution was defined to be equivariant under under the action
Lg(f) = f ◦ g−1, i.e., Lg(f) ⋆ ψ = Lg(f ⋆ ψ). If f was a function over Z2 such that f(x) is
the value of the pixel at x, then [Lg(f)](x) = f(D2d(g

−1)x), where D2d is a 2-dimensional
representation of group G. If D2d(g) was a matrix that rotated by 90◦ clockwise, how does
the image of the function represented by Lg(f) relate to that represented by f?.

Hint: If you do an example, define f and apply lg(f), before drawing images.

Solution:

⃝ 90◦ rotation counter-clockwise

√
90◦ rotation clockwise

Explain your answer with a simple example (like a single dot on a corner) or a proof:

Example: Let f{−1, 0, 1}2 −→ {0, 1} let f(1, 1) = 1 and f(x, y) = 0 otherwise. Note
that Lgf(1,−1) = f(g−1(1,−1)) = f(1, 1) = 1 So then then the location of the 1
changed by 90 degrees clockwise

Intuition:

You might remember when studying trigonometry that sin 2x is actually a contracted
version of sinx. So when you are multiplying the input to a function by something,
the effect on the graph is actually equal to the inverse.

Proof:

Another way to think about it is, if f(a) = y, lgf(ga) = f(g−1ga) = f(a) = y. So the
location of y changed by an action of g, when g−1 operated on the input! Which is
what we hoped writing an example would help you see.

Relating this to lecture: We defined Lg when f has an additional regular representation
dimension. That is f has arguments (x, i) ∈ Z × G. Lg(f) = f(D2d(g

−1)x, g−1i). This
has the effect of permuting the elements in the group dimension on top of the effect of the
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action on the spacial dimension (this question is only asking you to identify the effect on
the spacial dimension), since we repeat the given image across the regular representation
dimension in the input before passing it to the first layer. The action you identified is the
way to act on the input of the network (as permuting a repeated value has no effect).

(c) You build a model by purely stacking group convolutions, point-wise non-linearities and
pooling operations, as discussed in class. The second convolution layer has 4 input chan-
nels and 4 output channels with kernel height 3 and kernel width 3.

How many parameters does the second layer have?

Hint: You might want to look at the doc string for the following, as it takes the filter
parameters as input: group conv.image2D group convolution filter bank.

Solution:

Cin × Cout ×H ×W × |G| = 144× |C2| = 576

Common errors:

1. Using the size of the output of filter bank instead of the input. This ignores
the weight sharing accross the regrep dimension that gives us equivariance! and
gives an answer that’s a factor of |G| more than the actual answer

2. Giving the number of parameters of a regular convolotion. This ignores the fact
that we have |G| convnets in a group convnet. (and we get equivariance by
properly shuffling which ones we apply depending on reg rep dimension)

(d) In your model from part (c), the last layer outputs a single channel with a regular rep-
resentation dimension equal to the size of the group you chose in Part (a), and spatial
dimensions H = W = 1, i.e. the output has shape [1, |G|, 1, 1]. Finally, we apply a
soft-max function ( exi∑N

j=1 e
xj
) to this output to convert the output values to probabilities

over the group elements (the vectorspace of the regular representation).

In training, you use cross entropy loss between the output of the model, and a one hot
encoding of a group element (assume the content of the images is not symmetric for this
task to be meaningful). For a properly oriented images you use a one hot encoding of the
identity e as a label.

What element should you use as a label for an image that resulted from applying Lg to
a properly oriented image, where both images are defined to be functions of pixel coordi-
nates? Look at part (b) to remember what this means.

Which of the following should you use a one hot encoding of in the loss, and why?

Solution:√
g

⃝ g−1
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⃝ Either works.

⃝ Something else.

The model should predict e when given an image in proper orientation (at least ac-
cording to our labels above). When given an image that’s rotated by g, that is Lg was
applied on it.

Our label was the function f(e) = 1, and f(g) = 0 otherwise. We should act on it by
Lg, hence in a similar reasoning to part b), Lg(f)(g) = 1, and everything else 0. So it
should be labeled by g, If some of them were labeled by g−1 ̸= g then those samples
would hurt the model’s ability to learn.

To avoid double penalizing people, if people understood that only one works due to
equivariance, but derived the wrong answer due to impromer understanding of the
effect of function composotion (similar to part b). We gave full credit on this part.

Hint: If we predict either, we can recover the transformation we need to apply to the
image. So the questions is concerning what can group convolution learn as a target, not
what group element directly represents the transformation we want to apply to our image.
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(e) You are sharing your finding with your team, and of them says that you should augment
the data by rotating the images and updating the labels (the one hot encodings). Do you
think that would help improve performance? Why?

Solution:

No, the gradient would look the same due to weight sharing. (Alternatively, aug-
menting the data does not add more information, since they are labeled according to
equivariance rules, and the model is equivariant).

(f) What do you think the model would predict when given an blank photo?

Solution: Note that the since the image is blank, it does not change under Lg for
any g. By equivariance, this must hold for the output as well. This makes all entries
of the output equal, and since the last layer is a softmax, should should add up to 1.
They must all be 1

|G| .
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