
6.S966: Exam 2, Spring 2024

Do not tear exam booklet apart!

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 50

2 35

3 15

Total: 100

1

Name:

Steerable Convolution on Hexagonal Images

1. (50 points) There are two regular lattices that tile the 2D plane, square lattices (left) and
hexagonal lattices (right).

While it is more common to do convolutions over images made of square pixels, you can also
do the same for hexagonal pixels. In this problem, we will determine a basis of hexagonal
filters that transform as irreps, parameterize these filters using weights, and perform steerable
convolution using tensor product decomposition.

If we neglect translations and center on a specific hexagon pixel, a hexagonal lattice has a
point group symmetry of D6 with six-fold (60 degree) rotations and mirrors across the edges
and diagonals of the hexagon. The character table for D6 is

where the conjugacy classes are the columns and irreps are rows. For the conjugacy classes, E
is the identity, Cn are rotations of 2π/n, and σ are mirrors.

(a) Use the character table above to determine how many elements are in the point group D6.
What parts of the character table tell us how many elements a group has?

Page 2

Name:

(b) A hexagonal filter up to 1st nearest neighbors (1NN) pixels is built from 7 hexagonal
pixels. The single pixel basis and corresponding pixel coordinates for the hexagonal 1NN
filter are

Below, we provide the permutation matrices (grey= 0, black=1) that represent how D6

acts on the single pixel basis (assume the columns are in the same order as the pixel basis).

Below each permutation matrix, fill in the D6 conjugacy class that matrix belongs to.
You may assume 3σ′ is the conjugacy class of mirrors that pass through two edges of the
central hexagon (leaves three pixels invariant), while 3σ is the conjugacy class of mirrors
through pairs of vertices of the central hexagon.

Page 3

Name:

(c) We define perm_matrices as the permutation matrices from above and execute the fol-
lowing code.

1 D6_table = groups.make_multiplication_table(perm_matrices)

2 D6_irreps = rep.infer_irreps(D6_table)

3 for i, ir in enumerate(D6_irreps):

4 print(i, linalg.infer_change_of_basis(ir, perm_matrices).shape)

5 > 0 (2, 1, 7)

6 > 1 (1, 1, 7)

7 > 2 (0, 1, 7)

8 > 3 (0, 1, 7)

9 > 4 (1, 2, 7)

10 > 5 (1, 2, 7)

i. Describe what’s happening in lines 1 and 2. In particular, how does rep.infer_irreps
use its input to obtain irreps of the group?

ii. Describe what is happening in lines 3-4. In particular, what is the significance of
the shape of the output of linalg.infer_change_of_basis? How many irreps are
contained in the representation perm_matrices?

Page 4

Name:

(d) The outputs of linalg.infer_change_of_basis give us the change of basis between the
single pixel basis and specific irreps. This means the change of basis gives coefficients
indicating how much of each single pixel basis is contained in each irrep basis. We can
plot these coefficients to visualize the 7 irrep basis functions below. These basis functions
transform as a direct sum the following irreps of D6:

ρHex 1NN = 2A1 ⊕B2 ⊕ E1 ⊕ E2 (1)

i. Irrep Basis 1, 2, and 3 correspond to the output from part (c) for i = 0 and i = 1.
Using the D6 character table, determine which of these basis functions transform as
A1 vs. B2. Explain your reasoning.

ii. Given your answers in part (i), explain why there are two basis functions that trans-
form as A1? How are they similar? How are they different?

Page 5

Name:

iii. Irrep Basis 4 and 5 correspond to the output from part (c) for i = 4. Using the D6

character table, determine which 2D irrep these basis functions transforms as. Explain
your reasoning.

iv. Irrep Basis 6 and 7 correspond to the output from part (c) for i = 5. Using the D6

character table, determine which 2D irrep these basis functions transforms as. Explain
your reasoning.

)

Page 6

Name:

(e) Now, we want to add weights to our basis functions to parameterize convolutional ker-
nels, ψ(x, y) = WB(x, y). The weights matrix W for our kernel ψ is a linear map
W : ρbasis → ρfilter and thus has shape ρfilter × ρbasis, i.e. the rows span ρfilter and the
columns span ρbasis.

To commute with group action W must satisfy the following,

W ρfilter×ρbasisDρbasis(g)xρbasis = Dρfilter(g)W ρfilter×ρbasisxρbasis . (2)

where Dρ is the matrix representation for representation vector space ρ and is therefore a
ρ× ρ matrix.

Assume ρbasis = ρfilter = ρHex 1NN = 2A1 ⊕B2 ⊕E1 ⊕E2 (in that order). Below, fill in the
weight matrix W such that it commutes with group action. Use lower case Latin letters
(a, b, . . . , z) to label distinct weights. You may leave entries blank or use zeros to indicate
zeros.

Page 7

Name:

(f) To perform steerable convolution, we perform an elementwise tensor product of our filter
and the image patch the filter overlaps. The direct product table for the irreps of D6 is
given below. For example, using the table we see E1 ⊗B2 = E2.

If the input is a hexagonal image with features that transform as A2, and we use ρfilter =
2A1 ⊕ B2 ⊕ E1 ⊕ E2, how will the outputs of tensor product transform? In other words,
how does A2 ⊗ (2A1 ⊕B2 ⊕ E1 ⊕ E2) decompose into irreps?

Page 8

Name:

Planes of 4D Rotations

2. (35 points) In this question, we will investigate the Lie group of 4D rotations SO(4).

(a) Representations of Lie groups take the form of e
∑

i θiXi with parameters θi multiplying
generators Xi, where e

A =
∑

k
1
k!A

k. Like finite groups, Lie groups are closed under group
multiplication. If X and Y are matrices that do not necessarily commute, how do we
compute Z (or an approximation of Z) in eXeY = eZ? Explain your reasoning.

(b) Orthogonal matrices have the property RTR = RRT = I which means RT = R−1. Sup-
pose we have an orthogonal matrix generated by A, i.e., R = eA. We can use the definition
of eA =

∑
k

1
k!A

k to see RT = eA
T
. What condition do we have on AT if eAeA

T
= I = e0?

What must the diagonals of these generators be?

(c) There are 3 generators for SO(3) and 6 generators for SO(4). What would you expect the
number of generators to be for SO(5)? You can derive this using the condition above for
5× 5 matrices. Alternatively, you may use the fact that in n-dimensional space, there are
n choose 2 (i.e., n!

2!(n−2)!) planes but in that case explain how are rotations are connected

to planes. In case helpful, the generators for SO(4) are given on the next page.

Page 9

Name:

(d) Given the condition above, we can determine the generators for SO(n) of any n. The six
generators of SO(4) can be written as:

L1 = L(01) =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 L2 = L(02) =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 L3 = L(03) =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0



L4 = L(12) =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 L5 = L(13) =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 L6 = L(23) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


where Li enumerates the 6 generators and L(jk) specifies the plane of rotation.

i. Compute the commutators [L(01), L(12)] and [L(12), L(13)]

ii. Compute the commutators of [L(01), L(23)] and [L(02), L(13)].

Page 10

Name:

(e) Given what you computed above, describe in words the following cases for the Lie algebra
(commutator relationship) of SO(4): Under what circumstances are the commutators
zeros? Under what circumstances are the commutators non-zero? Don’t forget to handle
the case of the [L(ij), L(ij)]. From a geometric perspective (thinking of how rotations are
related to planes), does this make sense?

(f) We execute the following code.

1 so4_vec_vec = lie.tensor_product(so4_generators, so4_generators)

2 np.random.seed(42)

3 so3_vec_vec_irreps = lie.decompose_rep_into_irreps(so4_vec_vec)

In line 2, we are setting a random seed which makes the use of random numbers repro-
ducible. How is randomness used in lie.decompose_rep_into_irreps to arrive at the
irreps contained in the tensor product representation so4_vec_vec? Feel free to use an
einsum to help give your explanation.

Page 11

Name:

Spherical Harmonic Identity

3. (15 points) From elementary trigonometry, we know that sin(θ)2+cos(θ)2 = 1 for any θ. In this
question, we prove a generalized version of this identity for spherical harmonics. Let Yℓ,m(ξ)
denote the spherical harmonics for ℓ = 0, 1, . . . and ℓ ≤ m ≤ ℓ. Here, ξ = (x, y, z)T ∈ R3 is a
vector. Also, assume that we normalized spherical harmonics such that∫

S2

∣∣Yℓ,m(ξ)
∣∣2dξ = 1 (9)

for each ℓ,m, where the integral is over the sphere S2 =
{
ξ ∈ R3 : |ξ|2 = 1

}
.

In this problem, we want to show that for any ℓ and any ξ ∈ S2,

ℓ∑
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 = 2ℓ+ 1

4π
. (10)

(a) First, define the following function:

f(ξ1, ξ2) =
ℓ∑

m=−ℓ

Yℓ,m(ξ1)Yℓ,m(ξ2). (11)

Use the properties of spherical harmonics under 3D rotation

Yℓ,m(Dξ(g)ξ) =
ℓ∑

m′=−ℓ

Dℓ
m,m′Yℓ,m′(ξ) (12)

and the property of orthogonal matrices Dℓ
ij(g) = Dℓ

ji(g
−1) to show that f(ξ1, ξ2) is in-

variant under rotation, i.e. f(Dξ(g)ξ1, D
ξ(g)ξ2) = f(ξ1, ξ2).

Page 12

Name:

(b) Note, that because f(ξ1, ξ2) is invariant for any ξ1 and ξ2, for ξ1 = ξ2 = ξ, f(ξ, ξ) =∑ℓ
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 is still invariant. Prove that

∑ℓ
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 = 2ℓ+1

4π .

Hint. Integrate the left-hand side of the above identity. You may also find Eqn. 9 helpful.
Also,

∫
S2 dξ = 4π.

Page 13

Name:

symm4ml Docstring listing

Modules listed in order: groups, linalg, rep, lie

groups.make_multiplication_table:

Makes multiplication table for group.

Input:

matrices: np.array of shape [n, d, d], n matrices of dimension d that form

a group under matrix multiplication.

tol: float numberical tolerance

Output:

Group multiplication table.

np.array of shape [n, n] where entries correspond to indices of first dim

of matrices.

linalg.infer_change_of_basis:

Compute the change of basis matrix from X1 to X2.

tip: Use the function nullspace

Input:

X1: an (n, d1, d1) array of n (d1, d1) matrices

X2: an (n, d2, d2) array of n (d2, d2) matrices

Output:

Sols: An (m, d1, d2) array of m solutions.

Each solution is a (d1, d2) matrix that satisfies X1 @ S = S @ X2.

rep.decompose_rep_into_irreps:

Decomposes representation into irreducible representations.

Input:

rep: np.array [n, d, d] representation of group. rep[g] is a matrix that

represents g-th element of group.

Output:

Irreducible representations. List of np.array [n, d_i, d_i] where d_i is a

dimension of i-th irrep.

rep.infer_irreps:

Infers irreducible representations of group represented by multiplication table.

Input:

table: np.array [n, n] where table[i, j] = k means i * j = k.

Output:

Irreducible representations. List of np.array [n, d, d] where d is a

dimension of irrep.

lie.decompose_rep_into_irreps:

Decomposes representation into irreducible representations.

Input:

X: np.array [lie_dim, d, d] - generators of a representation.

Output:

Page 14

Name:

Ys: List[np.array] - list of generators of irreducible representations.

lie.tensor_product:

Tensor product of two representations of a Lie group.

Input:

X1: np.array [lie_dim, d1, d1] - generators of a representation.

X2: np.array [lie_dim, d2, d2] - generators of a representation.

Output:

X: np.array [lie_dim, d1*d2, d1*d2] - tensor product of the

representations.

Page 15

Name:

Work space

Page 16

Name:

Work space

Page 17

