
6.S966: Exam 2, Spring 2024

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 1 hours and 20 minutes.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 50

2 35

3 15

Total: 100

1



Name:

Steerable Convolution on Hexagonal Images

1. (50 points) There are two regular lattices that tile the 2D plane, square lattices (left) and
hexagonal lattices (right).

While it is more common to do convolutions over images made of square pixels, you can also
do the same for hexagonal pixels. In this problem, we will determine a basis of hexagonal
filters that transform as irreps, parameterize these filters using weights, and perform steerable
convolution using tensor product decomposition.

If we neglect translations and center on a specific hexagon pixel, a hexagonal lattice has a
point group symmetry of D6 with six-fold (60 degree) rotations and mirrors across the edges
and diagonals of the hexagon. The character table for D6 is

where the conjugacy classes are the columns and irreps are rows. For the conjugacy classes, E
is the identity, Cn are rotations of 2π/n, and σ are mirrors.

(a) Use the character table above to determine how many elements are in the point group D6.
What parts of the character table tell us how many elements a group has?

Solution: The hexagonal lattice has the same symmetry as a hexagon. It consists
of the identity, 6-fold rotations (of which there are 5, split into 3-fold and 6-fold
conjugacy classes), and mirrors across pairs of edges (3) and diagonals (3). Thus, in
total, it has 12 elements. We can see that there are 12 elements in total by looking at
the multiplicity of the numbers multiplying the symbol of the conjugacy classes (1 +
2 + 2 + 1 + 3 + 3 = 12). Alternatively, we can use the relationship

∑
i l

i = |G| and
the first column of the table for E to see that 12 + 12 + 12 + 12 + 22 + 22 = 12.

(b) A hexagonal filter up to 1st nearest neighbors (1NN) pixels is built from 7 hexagonal
pixels. The single pixel basis and corresponding pixel coordinates for the hexagonal 1NN
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filter are

Below, we provide the permutation matrices (grey= 0, black=1) that represent how D6

acts on the single pixel basis (assume the columns are in the same order as the pixel basis).

Below each permutation matrix, fill in the D6 conjugacy class that matrix belongs to.
You may assume 3σ′ is the conjugacy class of mirrors that pass through two edges of the
central hexagon (leaves three pixels invariant), while 3σ is the conjugacy class of mirrors
through pairs of vertices of the central hexagon.

Solution:
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(c) We define perm_matrices as the permutation matrices from above and execute the fol-
lowing code.

1 D6_table = groups.make_multiplication_table(perm_matrices)

2 D6_irreps = rep.infer_irreps(D6_table)

3 for i, ir in enumerate(D6_irreps):

4 print(i, linalg.infer_change_of_basis(ir, perm_matrices).shape)

5 > 0 (2, 1, 7)

6 > 1 (1, 1, 7)

7 > 2 (0, 1, 7)

8 > 3 (0, 1, 7)

9 > 4 (1, 2, 7)

10 > 5 (1, 2, 7)

i. Describe what’s happening in lines 1 and 2. In particular, how does rep.infer_irreps
use its input to obtain irreps of the group?

Solution: rep.infer_irreps creates the left regular representation from the
multiplication table and feed that to rep.decompose_rep_into_irreps. It then
checks for isomorphic irreps and only returns those that are unique.

ii. Describe what is happening in lines 3-4. In particular, what is the significance of
the shape of the output of linalg.infer_change_of_basis? How many irreps are
contained in the representation perm_matrices?

Solution: For each iteration, we are seeing if there exists a change of basis be-
tween one of the irreps of D6 and the representation perm_matrices. By looking
at the zeroth index of the shape for each iteration, we see that there are 2 + 1
+ 1 + 1 = 5 irreps contained in perm_matrices that span the 7 dimensions. By
looking at the first index of the shape, two of the irreps are 2D while the rest are
1D).
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(d) The outputs of linalg.infer_change_of_basis give us the change of basis between the
single pixel basis and specific irreps. This means the change of basis gives coefficients
indicating how much of each single pixel basis is contained in each irrep basis. We can
plot these coefficients to visualize the 7 irrep basis functions below. These basis functions
transform as a direct sum the following irreps of D6:

ρHex 1NN = 2A1 ⊕B2 ⊕ E1 ⊕ E2 (1)

i. Irrep Basis 1, 2, and 3 correspond to the output from part (c) for i = 0 and i = 1.
Using the D6 character table, determine which of these basis functions transform as
A1 vs. B2. Explain your reasoning.

Solution: Irrep Basis 1 and 2 transform as the irrep A1 because they are invariant
under group action. Irrep Basis 3 transforms as the irrep B2 because it is invariant
under mirrors across two vertices (i.e. 3σ′), invariant under 2C3 rotations, but
not invariant under 2C6.

ii. Given your answers in part (i), explain why there are two basis functions that trans-
form as A1? How are they similar? How are they different?

Solution: There are two such functions because there are two distinct radii – the
zero pixel and the shell of 1st nearest neighbors.
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iii. Irrep Basis 4 and 5 correspond to the output from part (c) for i = 4. Using the D6

character table, determine which 2D irrep these basis functions transforms as. Explain
your reasoning.

Solution: These basis functions transform as the irrep E1 because they corre-
spond to a 2D irrep but are not invariant under C2.

iv. Irrep Basis 6 and 7 correspond to the output from part (c) for i = 5. Using the D6

character table, determine which 2D irrep these basis functions transforms as. Explain
your reasoning.

Solution: These basis functions transform as the irrep E2 because they corre-
spond to a 2D irrep and are invariant under C2.

)
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(e) Now, we want to add weights to our basis functions to parameterize convolutional ker-
nels, ψ(x, y) = WB(x, y). The weights matrix W for our kernel ψ is a linear map
W : ρbasis → ρfilter and thus has shape ρfilter × ρbasis, i.e. the rows span ρfilter and the
columns span ρbasis.

To commute with group action W must satisfy the following,

W ρfilter×ρbasisDρbasis(g)xρbasis = Dρfilter(g)W ρfilter×ρbasisxρbasis . (2)

where Dρ is the matrix representation for representation vector space ρ and is therefore a
ρ× ρ matrix.

Assume ρbasis = ρfilter = ρHex 1NN = 2A1 ⊕B2 ⊕E1 ⊕E2 (in that order). Below, fill in the
weight matrix W such that it commutes with group action. Use lower case Latin letters
(a, b, . . . , z) to label distinct weights. You may leave entries blank or use zeros to indicate
zeros.

Solution:
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(f) To perform steerable convolution, we perform an elementwise tensor product of our filter
and the image patch the filter overlaps. The direct product table for the irreps of D6 is
given below. For example, using the table we see E1 ⊗B2 = E2.

If the input is a hexagonal image with features that transform as A2, and we use ρfilter =
2A1 ⊕ B2 ⊕ E1 ⊕ E2, how will the outputs of tensor product transform? In other words,
how does A2 ⊗ (2A1 ⊕B2 ⊕ E1 ⊕ E2) decompose into irreps?

Solution:

A2 ⊗ (2A1 ⊕B2 ⊕ E1 ⊕ E2) = 2A2 ⊕B1 ⊕ E1 ⊕ E2 (3)

* [NOT REQUIRED FOR EXAM] To expand on the above, we center our filter on
each pixel i of our input U and compute the following

V ρout
i =

∑
j∈N(i)

Uρin
j ⊗ ψρfilter({xij , yij}) =

∑
j∈N(i)

Qρout
ρin,ρfilter

Uρin
j ψρfilter({xij , yij}) (4)

where j ∈ N(i) indicates the pixels that are overlapped by the filter when the filter
is centered on i, Qρout

ρin,ρfilter is the change of basis from ρin ⊗ ρfilter → ρout, {xij , yij}
indicates the relative distances between i and j used to get the filter value, and V is
the output image.
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Planes of 4D Rotations

2. (35 points) In this question, we will investigate the Lie group of 4D rotations SO(4).

(a) Representations of Lie groups take the form of e
∑

i θiXi with parameters θi multiplying
generators Xi, where e

A =
∑

k
1
k!A

k. Like finite groups, Lie groups are closed under group
multiplication. If X and Y are matrices that do not necessarily commute, how do we
compute Z (or an approximation of Z) in eXeY = eZ? Explain your reasoning.

Solution: If X and Y are matrices that do not commute, eXeY ̸= eX+Y . To evaluate
what this is equivalent to, we need to use the Campbell-Baker-Hausdorff identity, i.e.
eXeY = eX+Y+ 1

2
[X,Y ]+ 1

3!
[X,[X,Y ]]+ 1

3!
[Y,[X,Y ]]....

(b) Orthogonal matrices have the property RTR = RRT = I which means RT = R−1. Sup-
pose we have an orthogonal matrix generated by A, i.e., R = eA. We can use the definition
of eA =

∑
k

1
k!A

k to see RT = eA
T
. What condition do we have on AT if eAeA

T
= I = e0?

What must the diagonals of these generators be?

Solution: AT = −A which means A are skew-symmetric matrices. The diagonals
must be zero.

(c) There are 3 generators for SO(3) and 6 generators for SO(4). What would you expect the
number of generators to be for SO(5)? You can derive this using the condition above for
5× 5 matrices. Alternatively, you may use the fact that in n-dimensional space, there are
n choose 2 (i.e., n!

2!(n−2)!) planes but in that case explain how are rotations are connected

to planes. In case helpful, the generators for SO(4) are given on the next page.

Solution: 5 × 5 skew symmetry matrices have equal and opposite off diagonals and
zeros on the diagonals so (25− 5)/2 = 10.

Alternatively, rotations are defined by planes. In 3D, the number of directions vs.
planes is the same (i.e. we get lucky). But in 4D it becomes clear that the number
of planes determines the number of distinct rotations (6 planes leads to 6 generators).

For 5D, 5!
2!3! =

54̇
2 = 10
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(d) Given the condition above, we can determine the generators for SO(n) of any n. The six
generators of SO(4) can be written as:

L1 = L(01) =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 L2 = L(02) =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 L3 = L(03) =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0



L4 = L(12) =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 L5 = L(13) =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 L6 = L(23) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


where Li enumerates the 6 generators and L(jk) specifies the plane of rotation.

i. Compute the commutators [L(01), L(12)] and [L(12), L(13)]

Solution:

[L(01), L(12)] = L(02) (5)

[L(12), L(13)] = −L(23) (6)

ii. Compute the commutators of [L(01), L(23)] and [L(02), L(13)].

Solution:

[L(01), L(23)] = 0 (7)

[L(02), L(13)] = 0 (8)
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(e) Given what you computed above, describe in words the following cases for the Lie algebra
(commutator relationship) of SO(4): Under what circumstances are the commutators
zeros? Under what circumstances are the commutators non-zero? Don’t forget to handle
the case of the [L(ij), L(ij)]. From a geometric perspective (thinking of how rotations are
related to planes), does this make sense?

Solution: The commutators are only nonzero when the two generators share one
direction that define the rotation planes. If they share both or no directions, the
commutator is zero. In the case of one shared direction, the resulting commutator
gives the generator of the two unshared directions, i.e. [L(01), L(12)] = L(02).

This makes sense geometrically because it means rotations only don’t commute if they
“mix” similar directions. If they mix independent directions, they can be applied in
any order.

[Not required] Because of the specific way we have our minus signs in the generators,
the commutator has a plus sign if the shared directions are on the “outside” or “in-
side”, i.e. [L(23), L(12)] or [L(01), L(12)]. Otherwise, the commutator has a minus sign.
Not required but for the sake of completeness – we can put this all together to write,

[L(mn), L(qp)] = δ(mp)L(nq) + δ(nq)L(mp) − δ(mq)L(np) − δ(np)L(mq)

(f) We execute the following code.

1 so4_vec_vec = lie.tensor_product(so4_generators, so4_generators)

2 np.random.seed(42)

3 so3_vec_vec_irreps = lie.decompose_rep_into_irreps(so4_vec_vec)

In line 2, we are setting a random seed which makes the use of random numbers repro-
ducible. How is randomness used in lie.decompose_rep_into_irreps to arrive at the
irreps contained in the tensor product representation so4_vec_vec? Feel free to use an
einsum to help give your explanation.

Solution: Randomness is used create a number of random coefficients that dot prod-
uct with the solutions from linalg.infer_change_of_basis(rep, rep) to help cre-
ate a matrix with non-degenerate eigenspaces, e.g. if
Qs = linalg.infer_change_of_basis(rep, rep) outputs a solution Qs.shape is
(m, n, n) we use m random coefficients
new_Q = np.einsum(’m,mnp->np’, rand_coeff, Qs). We then perform an eigen-
value decomposition of new_Q to find its eigenspaces which due to the randomness
should be vector spaces of irrep.
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Spherical Harmonic Identity

3. (15 points) From elementary trigonometry, we know that sin(θ)2+cos(θ)2 = 1 for any θ. In this
question, we prove a generalized version of this identity for spherical harmonics. Let Yℓ,m(ξ)
denote the spherical harmonics for ℓ = 0, 1, . . . and ℓ ≤ m ≤ ℓ. Here, ξ = (x, y, z)T ∈ R3 is a
vector. Also, assume that we normalized spherical harmonics such that∫

S2

∣∣Yℓ,m(ξ)
∣∣2dξ = 1 (9)

for each ℓ,m, where the integral is over the sphere S2 =
{
ξ ∈ R3 : |ξ|2 = 1

}
.

In this problem, we want to show that for any ℓ and any ξ ∈ S2,

ℓ∑
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 = 2ℓ+ 1

4π
. (10)

(a) First, define the following function:

f(ξ1, ξ2) =
ℓ∑

m=−ℓ

Yℓ,m(ξ1)Yℓ,m(ξ2). (11)

Use the properties of spherical harmonics under 3D rotation

Yℓ,m(Dξ(g)ξ) =

ℓ∑
m′=−ℓ

Dℓ
m,m′Yℓ,m′(ξ) (12)

and the property of orthogonal matrices Dℓ
ij(g) = Dℓ

ji(g
−1) to show that f(ξ1, ξ2) is in-

variant under rotation, i.e. f(Dξ(g)ξ1, D
ξ(g)ξ2) = f(ξ1, ξ2).

Solution: Note that for any g ∈ SO(3), we have

f(Dξ(g)ξ1, D
ξ(g)ξ2) =

ℓ∑
m=−ℓ

Yℓ,m(Dξ(g)ξ1)Yℓ,m(Dξ(g)ξ2)

=
ℓ∑

m=−ℓ

( ℓ∑
m′=−ℓ

Dℓ
m,m′(g)Yℓ,m′(ξ1)

ℓ∑
m′′=−ℓ

Dℓ
m,m′′(g)Yℓ,m′′(ξ2)

)

=

ℓ∑
m′=−ℓ

ℓ∑
m′′=−ℓ

Yℓ,m′(ξ1)Yℓ,m′′(ξ2)

ℓ∑
m=−ℓ

Dℓ
m,m′(g)Dℓ

m,m′′(g).

Now let us compute
∑ℓ

m=−ℓD
ℓ
m,m′(g)Dℓ

m,m′′(g). Note that using the properties of
orthogonal matrices, we have

ℓ∑
m=−ℓ

Dℓ
m,m′(g)Dℓ

m,m′′(g) =

ℓ∑
m=−ℓ

Dℓ
m′,m(g−1)Dℓ

m,m′′(g) (13)

=
ℓ∑

m=−ℓ

Dℓ
m′,m′′(g−1g). (14)
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But g−1g = e where eG is the identity element in the group SO(3), so Dℓ
m′,m′′(g−1g) =

Dℓ
m′,m′′(e). The matrix Dℓ(e) is the identity matrix of dimension (2ℓ + 1). Thus,

Dℓ
m′,m′′(g−1g) = δm′,m′′ , which means that it is one if m′ = m′′ and zero otherwise.

Thus, we conclude that

f(Dξ(g)ξ1, D
ξ(g)ξ2) =

ℓ∑
m′=−ℓ

ℓ∑
m′′=−ℓ

Yℓ,m′(ξ1)Yℓ,m′′(ξ2)δm′,m′′

=
ℓ∑

m′=−ℓ

Yℓ,m′(ξ1)Yℓ,m′(ξ2)

= f(ξ1, ξ2).

In particular, f(ξ1, ξ2) is invariant under the action of SO(3) on both vectors (simul-
taneously). This means that the function f(ξ1, ξ2) only depends on the inner product
of the two vectors, and this completes the proof.

(b) Note, that because f(ξ1, ξ2) is invariant for any ξ1 and ξ2, for ξ1 = ξ2 = ξ, f(ξ, ξ) =∑ℓ
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 is still invariant. Prove that

∑ℓ
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 = 2ℓ+1

4π .

Hint. Integrate the left-hand side of the above identity. You may also find Eqn. 9 helpful.
Also,

∫
S2 dξ = 4π.

Solution: We integrate the LHS of the above with respect to ξ over the sphere S2:∫
S2

ℓ∑
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2dξ = ℓ∑

m=−ℓ

∫
S2

∣∣Yℓ,m(ξ)
∣∣2dξ (15)

=
ℓ∑

m=−ℓ

1 = 2ℓ+ 1. (16)

But note that we also have∫
S2

ℓ∑
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2dξ = ℓ∑

m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2 ∫

S2

dξ = 4π

ℓ∑
m=−ℓ

∣∣Yℓ,m(ξ)
∣∣2, (17)

because the integrand is a constant (i.e., it does not depend on ξ). This completes the
proof.
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